22 research outputs found

    Potential of macrophytes for removing atrazine from aqueous solution.

    Get PDF
    The potential of three macrophytes, Azolla caroliniana, Salvinia minima, and Lemna gibba was assessed in this study to select plants for use in environmental remediation contaminated with atrazine. Experiments were carried out in a greenhouse over six days in pots containing Hoagland 0.25 strength nutritive solution at the following atrazineconcentrations: 0; 0.01; 0.1; 1.0; 10.0 mg L -1. Decrease in biomass accumulation was observed in the three macrophytes, as well as toxic effects evidenced by the symptomatology developed by the plants which caused their deaths. The chlorosis and necrosis allowed to observe in the plants the high sensitivity of the three species to the herbicide. Plants presented low potential for removal of atrazine in solution when exposed to low concentrations of the herbicide. However, at the 10.0 mg L-1 atrazine concentration, L. gibba and A. caroliniana showed potential to remove the herbicide from the solution (0.016 and 0.018 mg atrazine per fresh mass gram, respectively). This fact likely resulted from the processes of atrazine adsorption by the dead material. The percentage of atrazine removed from the solution by the plants decreased when the plants were exposed to high concentrations of the pollutant. Azolla caroliniana, S. minima, and L. gibba were not effective in removing the herbicide from solution. The use of these species to remedy aquatic environments was shown to be limitedNĂșmero especial

    Afinidade de seis variedades cĂ­tricas sobre porta enxerto de limĂŁo rugoso nacional (Citrus limon).

    Get PDF
    bitstream/item/152687/1/ComTec46.pd

    EmissĂ”es de N2O derivadas da ureia misturada com estabilizadores de nitrogĂȘnio para a cultura do milho.

    Get PDF
    O objetivo do presente estudo foi avaliar o impacto de estabilizadores de N nas emissÔes de N2O provenientes da ureia aplicada na cultura do milh

    Induction of Epithelial Mesenchimal Transition and Vasculogenesis in the Lenses of Dbl Oncogene Transgenic Mice

    Get PDF
    BACKGROUND: The Dbl family of proteins represents a large group of proto-oncogenes involved in cell growth regulation. The numerous domains that are present in many Dbl family proteins suggest that they act to integrate multiple inputs in complicated signaling networks involving the Rho GTPases. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders and neoplastic transformation. We generated transgenic mice introducing the cDNA of Dbl oncogene linked to the metallothionein promoter into the germ line of FVB mice and found that onco-Dbl expression in mouse lenses affected proliferation, migration and differentiation of lens epithelial cells. RESULTS: We used high density oligonucleotide microarray to define the transcriptional profile induced by Dbl in the lenses of 2 days, 2 weeks, and 6 weeks old transgenic mice. We observed modulation of genes encoding proteins promoting epithelial-mesenchymal transition (EMT), such as down-regulation of epithelial cell markers and up-regulation of fibroblast markers. Genes encoding proteins involved in the positive regulation of apoptosis were markedly down regulated while anti-apoptotic genes were strongly up-regulated. Finally, several genes encoding proteins involved in the process of angiogenesis were up-regulated. These observations were validated by histological and immunohistochemical examination of the transgenic lenses where vascularization can be readily observed. CONCLUSION: Onco-Dbl expression in mouse lens correlated with modulation of genes involved in the regulation of EMT, apoptosis and vasculogenesis leading to disruption of the lens architecture, epithelial cell proliferation, and aberrant angiogenesis. We conclude that onco-Dbl has a potentially important, previously unreported, capacity to dramatically alter epithelial cell migration, replication, polarization and differentiation and to induce vascularization of an epithelial tissue

    Potential of macrophytes for removing atrazine from aqueous solution.

    No full text
    The potential of three macrophytes, Azolla caroliniana, Salvinia minima, and Lemna gibba was assessed in this study to select plants for use in environmental remediation contaminated with atrazine. Experiments were carried out in a greenhouse over six days in pots containing Hoagland 0.25 strength nutritive solution at the following atrazineconcentrations: 0; 0.01; 0.1; 1.0; 10.0 mg L -1. Decrease in biomass accumulation was observed in the three macrophytes, as well as toxic effects evidenced by the symptomatology developed by the plants which caused their deaths. The chlorosis and necrosis allowed to observe in the plants the high sensitivity of the three species to the herbicide. Plants presented low potential for removal of atrazine in solution when exposed to low concentrations of the herbicide. However, at the 10.0 mg L-1 atrazine concentration, L. gibba and A. caroliniana showed potential to remove the herbicide from the solution (0.016 and 0.018 mg atrazine per fresh mass gram, respectively). This fact likely resulted from the processes of atrazine adsorption by the dead material. The percentage of atrazine removed from the solution by the plants decreased when the plants were exposed to high concentrations of the pollutant. Azolla caroliniana, S. minima, and L. gibba were not effective in removing the herbicide from solution. The use of these species to remedy aquatic environments was shown to be limited2011NĂșmero especial

    High frequency of development of B cell lymphoproliferation and diffuse large B cell lymphoma in Dbl knock-in mice.

    No full text
    Dbl is the prototype of a large family of GDP-GTP exchange factors for small GTPases of the Rho family. In vitro, Dbl is known to activate Rho, Rac, and Cdc42 and to induce a transformed phenotype in murine fibroblasts. We previously reported that Dbl-null mice are viable and fertile but display defective dendrite elongation of distinct subpopulations of cortical neurons, suggesting a role of Dbl in controlling dendritic growth. To gain deeper insights into the role of Dbl in development and disease, we attempted a knock-in approach to create an endogenous allele that encodes a missense-mutation-mediated loss of function in the DH domain. We generated, by gene targeting technology, a mutant mouse strain by inserting a mutagenized human proto-Dbl cDNA clone expressing only the Dbl N terminus regulatory sequence at the starting codon of murine exon 1. Animals were monitored over a 21-month period, and necropsy specimens were collected for histological examination and immunohistochemistry analysis. Dbl knock-in mice are viable and did not manifest either decreased reproductive performances or gross developmental phenotype but revealed a reduced lifespan compared to wild-type (w.t.) mice and showed, with aging, a B cell lymphoproliferation that often has features of a frank diffuse large B cell lymphoma. Moreover, Dbl knock-in male mice displayed an increased incidence of lung adenoma compared to w.t. mice. These data indicate that Dbl is a tumor susceptibility gene in mice and that loss of function of Dbl DH domain by genetic missense mutations is responsible for induction of diffuse large B cell lymphoma
    corecore