1,581 research outputs found

    Application of Navier-Stokes analysis to stall flutter

    Get PDF
    A solution procedure was developed to investigate the two-dimensional, one- or two-dimensional flutter characteristics of arbitrary airfoils. This procedure requires a simultaneous integration in time of the solid and fluid equations of motion. The fluid equations of motion are the unsteady compressible Navier-Stokes equations, solved in a body-fitted moving coordinate system using an approximate factorization scheme. The solid equations of motion are integrated in time using an Euler implicit scheme. Flutter is said to occur if small disturbances imposed on the airfoil attitude lead to divergent oscillatory motions at subsequent times. The flutter characteristics of airfoils in subsonic speed at high angles of attack and airfoils in high subsonic and transonic speeds at low angles of attack are investigated. The stall flutter characteristics are also predicted using the same procedure

    Numerical simulation of unsteady rotational flow over propfan configurations

    Get PDF
    The objective is to develop efficient numerical techniques for the study of aeroelastic response of a propfan in an unsteady transonic flow. A three dimensional unsteady Euler solver is being modified to address this problem

    Bioactive potential of sea urchin Temnopleurus toreumaticus from Devanampattinam, Southeast coast of India

    Get PDF
    The present investigation elucidates the bioactive potential of aqueous extract of sea urchin Temnopleurus toreumaticus. In this investigation biochemical, heamolytic, cytotoxic and FT-IR analysis were followed by standard methods. In biochemical analysis, proteins content 2.70 mgmL-1, total carbohydrates content 2.15 mgmL-1 and total lipids content 0.03 mgmL-1 were showed in aqueous extract of sea urchin. In heamolytic assay, the goat and chicken erythrocytes showed the maximum 64 Hemolytic Unit (HU) and human blood group “A” shows 32 HU, blood group “B” shows 64 HU, blood group “AB” shows 32 HU and blood group “O” shows 128 HU. In cytotoxic study, aqueous extract of sea urchin showed LC50 value 0.12±0.09 mgmL-1 concentration was showed 50% mortality. In antimicrobial assay, maximum zone inhibition 12.26 ± 0.6 mm showed by K. oxytoca and 3.33 ± 0.9 mm showed by Mucor sp. against chloroform extract of sea urchin T. toreumaticus. Thin layer chromatogram showed the spots of Rf values of 0.38, 0.85 cm. The FT-IR study shows the presence of functional groups such as chloroalkanes, bromoalkanes, iodoalkanes, alcohols groups, acids or aromatic ethers, methyl alkyl groups, 1° amines groups and ammonium ions. These results indicate that, sea urchin has remarkable hemolytic and cytotoxic activities.Keywords: Antimicrobial Assay, Biochemical, FT-IR, Sea Urchin, Heamolyti

    Cooking practices, air quality, and the acceptability of advanced cookstoves in Haryana, India: an exploratory study to inform large-scale interventions.

    Get PDF
    BackgroundIn India, approximately 66% of households rely on dung or woody biomass as fuels for cooking. These fuels are burned under inefficient conditions, leading to household air pollution (HAP) and exposure to smoke containing toxic substances. Large-scale intervention efforts need to be informed by careful piloting to address multiple methodological and sociocultural issues. This exploratory study provides preliminary data for such an exercise from Palwal District, Haryana, India.MethodsTraditional cooking practices were assessed through semi-structured interviews in participating households. Philips and Oorja, two brands of commercially available advanced cookstoves with small blowers to improve combustion, were deployed in these households. Concentrations of particulate matter (PM) with a diameter <2.5 μm (PM2.5) and carbon monoxide (CO) related to traditional stove use were measured using real-time and integrated personal, microenvironmental samplers for optimizing protocols to evaluate exposure reduction. Qualitative data on acceptability of advanced stoves and objective measures of stove usage were also collected.ResultsTwenty-eight of the thirty-two participating households had outdoor primary cooking spaces. Twenty households had liquefied petroleum gas (LPG) but preferred traditional stoves as the cost of LPG was higher and because meals cooked on traditional stoves were perceived to taste better. Kitchen area concentrations and kitchen personal concentrations assessed during cooking events were very high, with respective mean PM2.5 concentrations of 468 and 718 µg/m3. Twenty-four hour outdoor concentrations averaged 400 µg/m3. Twenty-four hour personal CO concentrations ranged between 0.82 and 5.27 ppm. The Philips stove was used more often and for more hours than the Oorja.ConclusionsThe high PM and CO concentrations reinforce the need for interventions that reduce HAP exposure in the aforementioned community. Of the two stoves tested, participants expressed satisfaction with the Philips brand as it met the local criteria for usability. Further understanding of how the introduction of an advanced stove influences patterns of household energy use is needed. The preliminary data provided here would be useful for designing feasibility and/or pilot studies aimed at intervention efforts locally and nationally

    Extraction of Dynamic Inflow Models for Coaxial and Tandem Rotors from CFD Simulations

    Get PDF
    The dynamic inflow coupling with rotor/body dynamics is crucial in the analysis of stability and control law design for helicopters. Over the past several decades, finite-state inflow models for single rotor configurations in hover, forward flight, and maneuver have developed (Ref.1-3). By capturing the interference effects between rotors, the extension of pressure potential finite state inflow model has promising result for coaxial rotor configuration (Ref.4-6). Recently, the focus of the dynamic inflow modeling has shifted to tandem rotor configurations (Ref.7, 8). The development of the dynamic inflow models for tandem rotor configuration still have some limitations due to the lack of knowledge of rotor-to-rotor interference, and rotor-wake interference. Experimental methods, and computational fluid dynamics methods are commonly used to understand the rotor performance and rotor airload variations, and measure or predict inflow velocity distributions at the rotor desk. The inflow distributions are subsequently used to improve the dynamic inflow models. Tandem rotor configurations have been studied experimentally and computationally for several decades (Ref.9-12). Sweet (Ref.10) observed that a tandem rotor with 76-percent-radius overlap required 14% more induced power at hovering condition, relative to an isolated rotor of equivalent disk area. Sweet also found that, above a shaft-to-shaft distance of 1.03 diameter, the performance of the tandem rotor was nearly the same as two isolated rotors. The objective of the present study is to apply computational fluid dynamics simulations of tandem rotors for the extraction of dynamic inflow models. The extended methodology is first validated by comparing the computed induced power against test data. Subsequently inflow distributions and wake structures are analyzed

    Correlation between tunneling magnetoresistance and magnetization in dipolar coupled nanoparticle arrays

    Full text link
    The tunneling magnetoresistance (TMR) of a hexagonal array of dipolar coupled anisotropic magnetic nanoparticles is studied using a resistor network model and a realistic micromagnetic configuration obtained by Monte Carlo simulations. Analysis of the field-dependent TMR and the corresponding magnetization curve shows that dipolar interactions suppress the maximum TMR effect, increase or decrease the field-sensitivity depending on the direction of applied field and introduce strong dependence of the TMR on the direction of the applied magnetic field. For off-plane magnetic fields, maximum values in the TMR signal are associated with the critical field for irreversible rotation of the magnetization. This behavior is more pronounced in strongly interacting systems (magnetically soft), while for weakly interacting systems (magnetically hard) the maximum of TMR (Hmax) occurs below the coercive field (Hc), in contrast to the situation for non-interacting nanoparticles or in-plane fields (Hmax=Hc). The relation of our simulations to recent TMR measurements in self-assembled Co nanoparticle arrays is discussed.Comment: 21 pages, 8 figures, submitted to Physical Review
    corecore