11,350 research outputs found
Renormalization analysis of intermittency in two coupled maps
The critical behavior for intermittency is studied in two coupled
one-dimensional (1D) maps. We find two fixed maps of an approximate
renormalization operator in the space of coupled maps. Each fixed map has a
common relavant eigenvaule associated with the scaling of the control parameter
of the uncoupled one-dimensional map. However, the relevant ``coupling
eigenvalue'' associated with coupling perturbation varies depending on the
fixed maps. These renormalization results are also confirmed for a
linearly-coupled case.Comment: 11 pages, RevTeX, 2 eps figure
Avalanches in a Bose-Einstein condensate
Collisional avalanches are identified to be responsible for an 8-fold
increase of the initial loss rate of a large 87-Rb condensate. We show that the
collisional opacity of an ultra-cold gas exhibits a critical value. When
exceeded, losses due to inelastic collisions are substantially enhanced. Under
these circumstances, reaching the hydrodynamic regime in conventional BEC
experiments is highly questionable.Comment: 4 pages, 2 figures, 1 tabl
Observation of Scarred Modes in Asymmetrically Deformed Microcylinder Lasers
We report observation of lasing in the scarred modes in an asymmetrically
deformed microcavity made of liquid jet. The observed scarred modes correspond
to morphology-dependent resonance of radial mode order 3 with their Q values in
the range of 10^6. Emission directionality is also observed, corresponding to a
hexagonal unstable periodic orbit.Comment: 4 pages, 6 figure
Collinear Factorization for Single Transverse-Spin Asymmetry in Drell-Yan Processes
We study the scattering of a single parton state with a multi-parton state to
derive the complete results of perturbative coefficient functions at leading
order, which appear in the collinear factorization for Single transverse-Spin
Asymmetry(SSA) in Drell-Yan processes with a transversely polarized hadron in
the initial state. We find that the factorization formula of SSA contains
hard-pole-, soft-quark-pole- and soft-gluon-pole contributions. It is
interesting to note that the leading order perturbative coefficient functions
of soft-quark-pole- and soft-gluon-pole contributions are extracted from parton
scattering amplitudes at one-loop, while the functions of hard-pole
contributions are extracted from the tree level amplitudes at tree-level. Our
method to derive the factorization of SSA is different than the existing one in
literature. A comparison of our results with those obtained by other method is
made.Comment: 27 pages, 14 figures, text improved, to appear in Phys. Rev.
A buyer-seller watermarking protocol for digital secondary market
In the digital right management value chain, digital watermarking technology plays a very important role in digital productâs security, especially on its usage tracking and copyrights infringement authentication. However, watermark procedures can only effectively support copyright protection processes if they are applied as part of an appropriate watermark protocol. In this regard, a number of watermark protocols have been proposed in the literature and have been shown to facilitate the use of digital watermarking technology as copyright protection. One example of such protocols is the anonymous buyer-seller watermarking protocol. Although there are a number of protocols that have been proposed in the literature and provide suitable solutions, they are mainly designed as a watermarking protocol for the first-hand market and are unsuitable for second-hand transactions. As the complexity of online transaction increases, so does the size of the digital second-hand market. In this paper, we present a new buyer-seller watermark protocol that addresses the needs of customerâs rights problem in the digital secondary market. The proposed protocol consists of five sub-protocols that cover the registration process, watermarking process for the first, second and third-hand transactions as well as the identification & arbitration processes. This paper provides analysis that compares the proposed protocols with existing state-of-the-arts and shows that it has met not only all the buyerâs and sellerâs requirements in the traditional sense but also accommodates the same requirements in the secondary market
Remarks on Renormalization of Black Hole Entropy
We elaborate the renormalization process of entropy of a nonextremal and an
extremal Reissner-Nordstr\"{o}m black hole by using the Pauli-Villars
regularization method, in which the regulator fields obey either the
Bose-Einstein or Fermi-Dirac distribution depending on their spin-statistics.
The black hole entropy involves only two renormalization constants. We also
discuss the entropy and temperature of the extremal black hole.Comment: 14 pages, revtex, no figure
Lyman alpha line formation in starbursting galaxies II. Extremely Thick, Dustless, and Static HI Media
The Lya line transfer in an extremely thick medium of neutral hydrogen is
investigated by adopting an accelerating scheme in our Monte Carlo code to skip
a large number of core or resonant scatterings. This scheme reduces computing
time significantly with no sacrifice in the accuracy of the results. We applied
this numerical method to the Lya transfer in a static, uniform, dustless, and
plane-parallel medium. Two types of photon sources have been considered, the
midplane source and the uniformly distributed sources. The emergent profiles
show double peaks and absorption trough at the line-center. We compared our
results with the analytic solutions derived by previous researchers, and
confirmed that both solutions are in good agreement with each other. We
investigated the directionality of the emergent Lya photons and found that limb
brightening is observed in slightly thick media while limb darkening appears in
extremely thick media. The behavior of the directionality is noted to follow
that of the Thomson scattered radiation in electron clouds, because both Lya
wing scattering and Thomson scattering share the same Rayleigh scattering phase
function. The mean number of wing scatterings just before escape is in exact
agreement with the prediction of the diffusion approximation. The Lya photons
constituting the inner part of the emergent profiles follow the relationship
derived from the diffusion approximation. We present a brief discussion on the
application of our results to the formation of Lya broad absorption troughs and
P-Cygni type Lya profiles seen in the UV spectra of starburst galaxies.Comment: 24 papges, 12 figures, The revised version submitted to Ap
A Flexible Privacy-preserving Framework for Singular Value Decomposition under Internet of Things Environment
The singular value decomposition (SVD) is a widely used matrix factorization
tool which underlies plenty of useful applications, e.g. recommendation system,
abnormal detection and data compression. Under the environment of emerging
Internet of Things (IoT), there would be an increasing demand for data analysis
to better human's lives and create new economic growth points. Moreover, due to
the large scope of IoT, most of the data analysis work should be done in the
network edge, i.e. handled by fog computing. However, the devices which provide
fog computing may not be trustable while the data privacy is often the
significant concern of the IoT application users. Thus, when performing SVD for
data analysis purpose, the privacy of user data should be preserved. Based on
the above reasons, in this paper, we propose a privacy-preserving fog computing
framework for SVD computation. The security and performance analysis shows the
practicability of the proposed framework. Furthermore, since different
applications may utilize the result of SVD operation in different ways, three
applications with different objectives are introduced to show how the framework
could flexibly achieve the purposes of different applications, which indicates
the flexibility of the design.Comment: 24 pages, 4 figure
Development of Navigation Control Algorithm for AGV Using D* Search Algorithm
In this paper, we present a navigation control algorithm for Automatic Guided Vehicles (AGV) that move in industrial environments including static and moving obstacles using D* algorithm. This algorithm has ability to get paths planning in unknown, partially known and changing environments efficiently. To apply the D* search algorithm, the grid map represent the known environment is generated. By using the laser scanner LMS-151 and laser navigation sensor NAV-200, the grid map is updated according to the changing of environment and obstacles. When the AGV finds some new map information such as new unknown obstacles, it adds the information to its map and re-plans a new shortest path from its current coordinates to the given goal coordinates. It repeats the process until it reaches the goal coordinates. This algorithm is verified through simulation and experiment. The simulation and experimental results show that the algorithm can be used to move the AGV successfully to reach the goal position while it avoids unknown moving and static obstacles. [Keywordsâ navigation control algorithm; Automatic Guided Vehicles (AGV); D* search algorithm
- âŠ