1,781 research outputs found

    Distributed PI-Control with Applications to Power Systems Frequency Control

    Full text link
    This paper considers a distributed PI-controller for networked dynamical systems. Sufficient conditions for when the controller is able to stabilize a general linear system and eliminate static control errors are presented. The proposed controller is applied to frequency control of power transmission systems. Sufficient stability criteria are derived, and it is shown that the controller parameters can always be chosen so that the frequencies in the closed loop converge to nominal operational frequency. We show that the load sharing property of the generators is maintained, i.e., the input power of the generators is proportional to a controller parameter. The controller is evaluated by simulation on the IEEE 30 bus test network, where its effectiveness is demonstrated

    Control of MTDC Transmission Systems under Local Information

    Full text link
    High-voltage direct current (HVDC) is a commonly used technology for long-distance electric power transmission, mainly due to its low resistive losses. In this paper a distributed controller for multi-terminal high-voltage direct current (MTDC) transmission systems is considered. Sufficient conditions for when the proposed controller renders the closed-loop system asymptotically stable are provided. Provided that the closed loop system is asymptotically stable, it is shown that in steady-state a weighted average of the deviations from the nominal voltages is zero. Furthermore, a quadratic cost of the current injections is minimized asymptotically

    Identifying capacitive and inductive loss in lumped element superconducting hybrid titanium nitride/aluminum resonators

    Full text link
    We present a method to systematically locate and extract capacitive and inductive losses in superconducting resonators at microwave frequencies by use of mixed-material, lumped element devices. In these devices, ultra-low loss titanium nitride was progressively replaced with aluminum in the inter-digitated capacitor and meandered inductor elements. By measuring the power dependent loss at 50 mK as the Al-TiN fraction in each element is increased, we find that at low electric field, i.e. in the single photon limit, the loss is two level system in nature and is correlated with the amount of Al capacitance rather than the Al inductance. In the high electric field limit, the remaining loss is linearly related to the product of the Al area times its inductance and is likely due to quasiparticles generated by stray radiation. At elevated temperature, additional loss is correlated with the amount of Al in the inductance, with a power independent TiN-Al interface loss term that exponentially decreases as the temperature is reduced. The TiN-Al interface loss is vanishingly small at the 50 mK base temperature.Comment: 10 pages, 5 figure

    Characterization and In-situ Monitoring of Sub-stoichiometric Adjustable Tc Titanium Nitride Growth

    Get PDF
    The structural and electrical properties of Ti-N films deposited by reactive sputtering depend on their growth parameters, in particular the Ar:N2 gas ratio. We show that the nitrogen percentage changes the crystallographic phase of the film progressively from pure \alpha-Ti, through an \alpha-Ti phase with interstitial nitrogen, to stoichiometric Ti2N, and through a substoichiometric TiNX to stoichiometric TiN. These changes also affect the superconducting transition temperature, Tc, allowing, the superconducting properties to be tailored for specific applications. After decreasing from a Tc of 0.4 K for pure Ti down to below 50 mK at the Ti2N point, the Tc then increases rapidly up to nearly 5 K over a narrow range of nitrogen incorporation. This very sharp increase of Tc makes it difficult to control the properties of the film from wafer-to-wafer as well as across a given wafer to within acceptable margins for device fabrication. Here we show that the nitrogen composition and hence the superconductive properties are related to, and can be determined by, spectroscopic ellipsometry. Therefore, this technique may be used for process control and wafer screening prior to investing time in processing devices

    Distributed Voltage and Current Control of Multi-Terminal High-Voltage Direct Current Transmission Systems

    Full text link
    High-voltage direct current (HVDC) is a commonly used technology for long-distance power transmission, due to its low resistive losses and low costs. In this paper, a novel distributed controller for multi-terminal HVDC (MTDC) systems is proposed. Under certain conditions on the controller gains, it is shown to stabilize the MTDC system. The controller is shown to always keep the voltages close to the nominal voltage, while assuring that the injected power is shared fairly among the converters. The theoretical results are validated by simulations, where the affect of communication time-delays is also studied
    • …
    corecore