2,468 research outputs found
Hubbard-model description of the high-energy spin-spectral-weight distribution in La(2)CuO(4)
The spectral-weight distribution in recent neutron scattering experiments on
the parent compound LaCuO (LCO), which are limited in energy range to
about 450\,meV, is studied in the framework of the Hubbard model on the square
lattice with effective nearest-neighbor transfer integral and on-site
repulsion . Our study combines a number of numerical and theoretical
approaches, including, in addition to standard treatments, density matrix
renormalization group calculations for Hubbard cylinders and a suitable spinon
approach for the spin excitations. Our results confirm that the
magnitude suitable to LCO corresponds to intermediate values smaller than
the bandwidth , which we estimate to be eV for
. This confirms the unsuitability of the conventional linear
spin-wave theory. Our theoretical studies provide evidence for the occurrence
of ground-state d-wave spinon pairing in the half-filled Hubbard model on the
square lattice. This pairing applies only to the rotated-electron spin degrees
of freedom, but it could play a role in a possible electron d-wave pairing
formation upon hole doping. We find that the higher-energy spin spectral weight
extends to about 566 meV and is located at and near the momentum .
The continuum weight energy-integrated intensity vanishes or is extremely small
at momentum . This behavior of this intensity is consistent with that
of the spin waves observed in recent high-energy neutron scattering
experiments, which are damped at the momentum . We suggest that future
LCO neutron scattering experiments scan the energies between 450 meV and 566
meV and momenta around .Comment: 23 pages, 5 figure
Space Shuttle program communication and tracking systems interface analysis
The Space Shuttle Program Communications and Tracking Systems Interface Analysis began April 18, 1983. During this time, the shuttle communication and tracking systems began flight testing. Two areas of analysis documented were a result of observations made during flight tests. These analyses involved the Ku-band communication system. First, there was a detailed analysis of the interface between the solar max data format and the Ku-band communication system including the TDRSS ground station. The second analysis involving the Ku-band communication system was an analysis of the frequency lock loop of the Gunn oscillator used to generate the transmit frequency. The stability of the frequency lock loop was investigated and changes to the design were reviewed to alleviate the potential loss of data due the loop losing lock and entering the reacquisition mode. Other areas of investigation were the S-band antenna analysis and RF coverage analysis
Scalar Casimir Effect on a D-dimensional Einstein Static Universe
We compute the renormalised energy momentum tensor of a free scalar field
coupled to gravity on an (n+1)-dimensional Einstein Static Universe (ESU),
RxS^n, with arbitrary low energy effective operators (up to mass dimension
n+1). A generic class of regulators is used, together with the Abel-Plana
formula, leading to a manifestly regulator independent result. The general
structure of the divergences is analysed to show that all the gravitational
couplings (not just the cosmological constant) are renormalised for an
arbitrary regulator. Various commonly used methods (damping function,
point-splitting, momentum cut-off and zeta function) are shown to, effectively,
belong to the given class. The final results depend strongly on the parity of
n. A detailed analytical and numerical analysis is performed for the behaviours
of the renormalised energy density and a quantity `sigma' which determines if
the strong energy condition holds for the `quantum fluid'. We briefly discuss
the quantum fluid back-reaction problem, via the higher dimensional Friedmann
and Raychaudhuri equations, observe that equilibrium radii exist and unveil the
possibility of a `Casimir stabilisation of Einstein Static Universes'.Comment: 37 pages, 15 figures, v2: minor changes in sections 1, 2.5, 3 and 4;
version published in CQ
Estabelecimento de normas DRIS para o cupuaçueiro na região amazônica.
A avaliação do estado nutricional de um pomar ou lavoura depende da definição de valores de referência que sejam adequados para refletir as condições de crescimento das plantas. Neste sentido, o objetivo deste trabalho foi determinar normas DRIS para cupuaçueiro cultivado na Amazônia, testando em populações com diferentes idades. Amostras foliares de cupuaçu foram coletadas de pomares comerciais, cuja idade das plantas variou de 5 a 18 anos, cultivadas sob monocultivo ou sistemas agroflorestais (SAF's), obtendo-se para cada relação nutricional entre os nutrientes N, P, K, Ca, Mg, Zn, Fe, Mn e Cu as normas DRIS, as quais foram obtidas para o conjunto da população monitorada e para subpopulações específicas. Os diferentes grupos de normas não diferem entre si, possibilitando a obtenção de normas DRIS que possam representar um grande número de condições de produção
Efeito do posicionamento da folha no potencial turgor e condutância estomática em Limoeiro Cravo (Citrus limonia L. Osbeck).
O potencial turgor (?p) é um componente do potencial total da água (?w) que está associado à expansão celular e manutenção da estrutura da planta. É bem provável que ocorra variação no ?p em relação ao posicionamento da folha, e esta variação seja governada pelo gradiente de potencial hídrico na planta. Devido a metodologias consideradas minuciosas, como exemplo o uso do método da sonda de pressão (HUSKEN et al., 1978), este parâmetro não tem sido determinado e em muitos estudos que envolve relações hídricas de planta, o valor de ?p é conhecido de forma indireta pela diferença entre o potencial total da água e potencial osmótico
Implicit Regularization and Renormalization of QCD
We apply the Implicit Regularization Technique (IR) in a non-abelian gauge
theory. We show that IR preserves gauge symmetry as encoded in relations
between the renormalizations constants required by the Slavnov-Taylor
identities at the one loop level of QCD. Moreover, we show that the technique
handles divergencies in massive and massless QFT on equal footing.Comment: (11 pages, 2 figures
Probing the interface magnetism in the FeMn/NiFe exchange bias system using magnetic second harmonic generation
Second harmonic generation magneto-optic Kerr effect (SHMOKE) experiments,
sensitive to buried interfaces, were performed on a polycrystalline NiFe/FeMn
bilayer in which areas with different exchange bias fields were prepared using
5 KeV He ion irradiation. Both reversible and irreversible uncompensated spins
are found in the antiferromagnetic layer close to the interface with the
ferromagnetic layer. The SHMOKE hysteresis loop shows the same exchange bias
field as obtained from standard magnetometry. We demonstrate that the exchange
bias effect is controlled by pinned uncompensated spins in the
antiferromagnetic layer.Comment: submitted to Phys. Rev. Let
- …