2,468 research outputs found

    Hubbard-model description of the high-energy spin-spectral-weight distribution in La(2)CuO(4)

    Full text link
    The spectral-weight distribution in recent neutron scattering experiments on the parent compound La2_2CuO4_4 (LCO), which are limited in energy range to about 450\,meV, is studied in the framework of the Hubbard model on the square lattice with effective nearest-neighbor transfer integral tt and on-site repulsion UU. Our study combines a number of numerical and theoretical approaches, including, in addition to standard treatments, density matrix renormalization group calculations for Hubbard cylinders and a suitable spinon approach for the spin excitations. Our results confirm that the U/8tU/8t magnitude suitable to LCO corresponds to intermediate UU values smaller than the bandwidth 8t8t, which we estimate to be 8t2.368t \approx 2.36 eV for U/8t0.76U/8t\approx 0.76. This confirms the unsuitability of the conventional linear spin-wave theory. Our theoretical studies provide evidence for the occurrence of ground-state d-wave spinon pairing in the half-filled Hubbard model on the square lattice. This pairing applies only to the rotated-electron spin degrees of freedom, but it could play a role in a possible electron d-wave pairing formation upon hole doping. We find that the higher-energy spin spectral weight extends to about 566 meV and is located at and near the momentum [π,π][\pi,\pi]. The continuum weight energy-integrated intensity vanishes or is extremely small at momentum [π,0][\pi,0]. This behavior of this intensity is consistent with that of the spin waves observed in recent high-energy neutron scattering experiments, which are damped at the momentum [π,0][\pi,0]. We suggest that future LCO neutron scattering experiments scan the energies between 450 meV and 566 meV and momenta around [π,π][\pi,\pi].Comment: 23 pages, 5 figure

    Space Shuttle program communication and tracking systems interface analysis

    Get PDF
    The Space Shuttle Program Communications and Tracking Systems Interface Analysis began April 18, 1983. During this time, the shuttle communication and tracking systems began flight testing. Two areas of analysis documented were a result of observations made during flight tests. These analyses involved the Ku-band communication system. First, there was a detailed analysis of the interface between the solar max data format and the Ku-band communication system including the TDRSS ground station. The second analysis involving the Ku-band communication system was an analysis of the frequency lock loop of the Gunn oscillator used to generate the transmit frequency. The stability of the frequency lock loop was investigated and changes to the design were reviewed to alleviate the potential loss of data due the loop losing lock and entering the reacquisition mode. Other areas of investigation were the S-band antenna analysis and RF coverage analysis

    Scalar Casimir Effect on a D-dimensional Einstein Static Universe

    Full text link
    We compute the renormalised energy momentum tensor of a free scalar field coupled to gravity on an (n+1)-dimensional Einstein Static Universe (ESU), RxS^n, with arbitrary low energy effective operators (up to mass dimension n+1). A generic class of regulators is used, together with the Abel-Plana formula, leading to a manifestly regulator independent result. The general structure of the divergences is analysed to show that all the gravitational couplings (not just the cosmological constant) are renormalised for an arbitrary regulator. Various commonly used methods (damping function, point-splitting, momentum cut-off and zeta function) are shown to, effectively, belong to the given class. The final results depend strongly on the parity of n. A detailed analytical and numerical analysis is performed for the behaviours of the renormalised energy density and a quantity `sigma' which determines if the strong energy condition holds for the `quantum fluid'. We briefly discuss the quantum fluid back-reaction problem, via the higher dimensional Friedmann and Raychaudhuri equations, observe that equilibrium radii exist and unveil the possibility of a `Casimir stabilisation of Einstein Static Universes'.Comment: 37 pages, 15 figures, v2: minor changes in sections 1, 2.5, 3 and 4; version published in CQ

    Estabelecimento de normas DRIS para o cupuaçueiro na região amazônica.

    Get PDF
    A avaliação do estado nutricional de um pomar ou lavoura depende da definição de valores de referência que sejam adequados para refletir as condições de crescimento das plantas. Neste sentido, o objetivo deste trabalho foi determinar normas DRIS para cupuaçueiro cultivado na Amazônia, testando em populações com diferentes idades. Amostras foliares de cupuaçu foram coletadas de pomares comerciais, cuja idade das plantas variou de 5 a 18 anos, cultivadas sob monocultivo ou sistemas agroflorestais (SAF's), obtendo-se para cada relação nutricional entre os nutrientes N, P, K, Ca, Mg, Zn, Fe, Mn e Cu as normas DRIS, as quais foram obtidas para o conjunto da população monitorada e para subpopulações específicas. Os diferentes grupos de normas não diferem entre si, possibilitando a obtenção de normas DRIS que possam representar um grande número de condições de produção

    Efeito do posicionamento da folha no potencial turgor e condutância estomática em Limoeiro Cravo (Citrus limonia L. Osbeck).

    Get PDF
    O potencial turgor (?p) é um componente do potencial total da água (?w) que está associado à expansão celular e manutenção da estrutura da planta. É bem provável que ocorra variação no ?p em relação ao posicionamento da folha, e esta variação seja governada pelo gradiente de potencial hídrico na planta. Devido a metodologias consideradas minuciosas, como exemplo o uso do método da sonda de pressão (HUSKEN et al., 1978), este parâmetro não tem sido determinado e em muitos estudos que envolve relações hídricas de planta, o valor de ?p é conhecido de forma indireta pela diferença entre o potencial total da água e potencial osmótico

    Implicit Regularization and Renormalization of QCD

    Full text link
    We apply the Implicit Regularization Technique (IR) in a non-abelian gauge theory. We show that IR preserves gauge symmetry as encoded in relations between the renormalizations constants required by the Slavnov-Taylor identities at the one loop level of QCD. Moreover, we show that the technique handles divergencies in massive and massless QFT on equal footing.Comment: (11 pages, 2 figures

    Probing the interface magnetism in the FeMn/NiFe exchange bias system using magnetic second harmonic generation

    Full text link
    Second harmonic generation magneto-optic Kerr effect (SHMOKE) experiments, sensitive to buried interfaces, were performed on a polycrystalline NiFe/FeMn bilayer in which areas with different exchange bias fields were prepared using 5 KeV He ion irradiation. Both reversible and irreversible uncompensated spins are found in the antiferromagnetic layer close to the interface with the ferromagnetic layer. The SHMOKE hysteresis loop shows the same exchange bias field as obtained from standard magnetometry. We demonstrate that the exchange bias effect is controlled by pinned uncompensated spins in the antiferromagnetic layer.Comment: submitted to Phys. Rev. Let
    corecore