21 research outputs found

    Extragalactic jets on subpc and large scales

    Full text link
    Jets can be probed in their innermost regions (d~0.1 pc) through the study of the relativistically-boosted emission of blazars. On the other extreme of spatial scales, the study of structure and dynamics of extragalactic relativistic jets received renewed impulse after the discovery, made by Chandra, of bright X-ray emission from regions at distances larger than hundreds of kpc from the central engine. At both scales it is thus possible to infer some of the basic parameters of the flow (speed, density, magnetic field intensity, power). After a brief review of the available observational evidence, I discuss how the comparison between the physical quantities independently derived at the two scales can be used to shed light on the global dynamics of the jet, from the innermost regions to the hundreds of kpc scale.Comment: Proceedings of the 5th Stromlo Symposium: Disks, Winds, and Jets - from Planets to Quasars. Accepted, to be published in Astrophysics & Space Scienc

    Probing Broad Absorption Line Quasar Outflows: X-ray Insights

    Full text link
    Energetic outflows appear to occur in conjunction with active mass accretion onto supermassive black holes. These outflows are most readily observed in the approximately 10% of quasars with broad absorption lines, where the observer's line of sight passes through the wind. Until fairly recently, the paucity of X-ray data from these objects was notable, but now sensitive hard-band missions such as Chandra and XMM-Newton are routinely detecting broad absorption line quasars. The X-ray regime offers qualitatively new information for the understanding of these objects, and these new results must be taken into account in theoretical modeling of quasar winds.Comment: Submitted to Advances in Space Research for New X-ray Results from Clusters of Galaxies and Black Holes (Oct 2002; Houston, TX), eds. C. Done, E.M. Puchnarewicz, M.J. Ward. Requires cospar.sty (6 pgs, 5 figs

    Blazar nuclei in radio-loud narrow-line Seyfert 1?

    Full text link
    It has been suggested that some radio-loud narrow-line Seyfert 1 contain relativistic jets, on the basis of their flat-spectrum radio nuclei and studies on variability. We present preliminary results of an ongoing investigation of the X-ray and multiwavelength properties of 5 radio-loud NLS1 based on archival data from Swift and XMM-Newton. Some sources present interesting characteristics, very uncharacteristic for a radio-quiet narrow-line Seyfert 1, such as very hard X-ray spectra, and correlated optical and ultraviolet variability. However, none of the studied sources show conclusive evidence for relativistic jets. gamma-ray observations with Fermi are strongly recommended to definitely decide on the presence or not of relativistic jets.Comment: 9 pages, 4 figures. Talk presented at the 37th COSPAR Assembly (Montreal, Canada, July 13-20, 2008), Session E17. Accepted for publication on Advances in Space Researc

    Active Galactic Nuclei at the Crossroads of Astrophysics

    Get PDF
    Over the last five decades, AGN studies have produced a number of spectacular examples of synergies and multifaceted approaches in astrophysics. The field of AGN research now spans the entire spectral range and covers more than twelve orders of magnitude in the spatial and temporal domains. The next generation of astrophysical facilities will open up new possibilities for AGN studies, especially in the areas of high-resolution and high-fidelity imaging and spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These studies will address in detail a number of critical issues in AGN research such as processes in the immediate vicinity of supermassive black holes, physical conditions of broad-line and narrow-line regions, formation and evolution of accretion disks and relativistic outflows, and the connection between nuclear activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical Symposia Serie

    Fermi acceleration in astrophysical jets

    Get PDF
    We consider the acceleration of energetic particles by Fermi processes (i.e., diffusive shock acceleration, second order Fermi acceleration, and gradual shear acceleration) in relativistic astrophysical jets, with particular attention given to recent progress in the field of viscous shear acceleration. We analyze the associated acceleration timescales and the resulting particle distributions, and discuss the relevance of these processes for the acceleration of charged particles in the jets of AGNs, GRBs and microquasars, showing that multi-component powerlaw-type particle distributions are likely to occur.Comment: 6 pages, one figure; based on talk at "The multimessenger approach to unidentified gamma-ray sources", Barcelona/Spain, July 2006; accepted for publication in Astrophysics and Space Scienc

    Extended Inverse-Compton Emission from Distant, Powerful Radio Galaxies

    No full text
    corecore