45 research outputs found

    Mid-Infrared Plasmonic Platform Based on n-Doped Ge-on-Si: Molecular Sensing with Germanium Nano-Antennas on Si

    Get PDF
    CMOS-compatible, heavily-doped semiconductor films are very promising for applications in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in this wavelength range. In this work we investigate n-type doped germanium epilayers grown on Si substrates. We design and realize Ge nanoantennas on Si substrates demonstrating the presence of localized plasmon resonances, and exploit them for molecular sensing in the mid-infrared

    Biological effects of COVID-19 on lung cancer: can we drive our decisions?

    Get PDF
    COVID-19 infection caused by SARS-CoV-2 is considered catastrophic because it affects multiple organs, particularly those of the respiratory tract. Although the consequences of this infection are not fully clear, it causes damage to the lungs, the cardiovascular and nervous systems, and other organs, subsequently inducing organ failure. In particular, the effects of SARS-CoV-2-induced inflammation on cancer cells and the tumor microenvironment need to be investigated. COVID-19 may alter the tumor microenvironment, promoting cancer cell proliferation and dormant cancer cell (DCC) reawakening. DCCs reawakened upon infection with SARS-CoV-2 can populate the premetastatic niche in the lungs and other organs, leading to tumor dissemination. DCC reawakening and consequent neutrophil and monocyte/macrophage activation with an uncontrolled cascade of pro-inflammatory cytokines are the most severe clinical effects of COVID-19. Moreover, neutrophil extracellular traps have been demonstrated to activate the dissemination of premetastatic cells into the lungs. Further studies are warranted to better define the roles of COVID-19 in inflammation as well as in tumor development and tumor cell metastasis; the results of these studies will aid in the development of further targeted therapies, both for cancer prevention and the treatment of patients with COVID-19

    Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review

    Get PDF
    Identified 50 years ago, mesenchymal stromal/stem cells (MSCs) immediately generated a substantial interest among the scientific community because of their differentiation plasticity and hematopoietic supportive function. Early investigations provided evidence of a relatively low engraftment rate and a transient benefit for challenging congenital and acquired diseases. The reasons for these poor therapeutic benefits forced the entire field to reconsider MSC mechanisms of action together with their ex vivo manipulation procedures. This phase resulted in advances in MSCs processing and the hypothesis that MSC-tissue supportive functions may be prevailing their differentiation plasticity, broadening the spectrum of MSCs therapeutic potential far beyond their lineage-restricted commitments. Consequently, an increasing number of studies have been conducted for a variety of clinical indications, revealing additional challenges and suggesting that MSCs are still lagging behind for a solid clinical translation. For this reason, our aim was to dissect the current challenges in the development of still promising cell types that, after more than half a century, still need to reach their maturity. Stem Cells Translational Medicine 2019;8:1135–1148

    Mesenchymal stem cell immunomodulation: In pursuit of controlling COVID-19 related cytokine storm

    Get PDF
    The Coronavirus disease 2019 (COVID-19) pandemic has grown to be a global public health crisis with no safe and effective treatments available yet. Recent findings suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus pathogen that causes COVID-19, could elicit a cytokine storm that drives edema, dysfunction of the airway exchange, and acute respiratory distress syndrome in the lung, followed by acute cardiac injury and thromboembolic events leading to multiorgan failure and death. Mesenchymal stem cells (MSCs), owing to their powerful immunomodulatory abilities, have the potential to attenuate the cytokine storm and have therefore been proposed as a potential therapeutic approach for which several clinical trials are underway. Given that intravenous infusion of MSCs results in a significant trapping in the lung, MSC therapy could directly mitigate inflammation, protect alveolar epithelial cells, and reverse lung dysfunction by normalizing the pulmonary microenvironment and preventing pulmonary fibrosis. In this review, we present an overview and perspectives of the SARS-CoV-2 induced inflammatory dysfunction and the potential of MSC immunomodulation for the prevention and treatment of COVID-19 related pulmonary disease

    Psi clustering for the assessment of underground infrastructure deterioration

    Get PDF
    Remote sensing images find application in several different domains, such as land cover or land usage observation, environmental monitoring, and urbanization. This latter field has recently witnessed an interesting development with the use of remote sensing for infrastructural monitoring. In this work, we present an analysis of Sentinel-1 images, which were used to monitor the Italian provinces of Bologna and Modena located at the Emilia Region Apennines foothill. The goal of this study was the development of a machine learning-based detection system to monitor the deterioration of public aqueduct infrastructures based on Persistent Scatterer Interferometry (PSI). We evaluated the land deformation over a temporal range of five years; these series feed a k-means clustering algorithm to separate the pixels of the region according to different deformation patterns. Furthermore, we defined the critical areas as those areas where different patterns collided or overlapped. The proposed approach provides an informative tool for the structural health monitoring of underground infrastructures

    Impact of HOXB7 overexpression on human adipose-derived mesenchymal progenitors

    Get PDF
    Background: The ex vivo expansion potential of mesenchymal stromal/stem cells (MSC) together with their differentiation and secretion properties makes these cells an attractive tool for transplantation and tissue engineering. Although the use of MSC is currently being tested in a growing number of clinical trials, it is still desirable to identify molecular markers that may help improve their performance both in vitro and after transplantation. Methods: Recently, HOXB7 was identified as a master player driving the proliferation and differentiation of bone marrow mesenchymal progenitors. In this study, we investigated the effect of HOXB7 overexpression on the ex vivo features of adipose mesenchymal progenitors (AD-MSC). Results: HOXB7 increased AD-MSC proliferation potential, reduced senescence, and improved chondrogenesis together with a significant increase of basic fibroblast growth factor (bFGF) secretion. Conclusion: While further investigations and in vivo models shall be applied for better understanding, these data suggest that modulation of HOXB7 may be a strategy for innovative tissue regeneration applications

    Supermode dispersion and waveguide-to-slot mode transition in arrays of silicon-on-insulator waveguides

    Get PDF
    In this Letter, we report group index measurements of the supermodes of an array of two strongly coupled silicon-on-insulator waveguides. We observe coupling-induced dispersion that is greater than the material and waveguide dispersion of the individual waveguides. We demonstrate that the system transforms from supporting the two supermodes associated with two coupled waveguides to the single mode of a slot waveguide within the investigated spectral range. During the cutoff of the antisymmetric supermode, an anti-crossing between the symmetric TM and antisymmetric TE supermodes has been observed

    Molecular Mechanisms and Physiological Changes behind Benign Tracheal and Subglottic Stenosis in Adults

    Get PDF
    Laryngotracheal stenosis (LTS) is a complex and heterogeneous disease whose pathogenesis remains unclear. LTS is considered to be the result of aberrant wound-healing process that leads to fibrotic scarring, originating from different aetiology. Although iatrogenic aetiology is the main cause of subglottic or tracheal stenosis, also autoimmune and infectious diseases may be involved in causing LTS. Furthermore, fibrotic obstruction in the anatomic region under the glottis can also be diagnosed without apparent aetiology after a comprehensive workup; in this case, the pathological process is called idiopathic subglottic stenosis (iSGS). So far, the laryngotracheal scar resulting from airway injury due to different diseases was considered as inert tissue requiring surgical removal to restore airway patency. However, this assumption has recently been revised by regarding the tracheal scarring process as a fibroinflammatory event due to immunological alteration, similar to other fibrotic diseases. Recent acquisitions suggest that different factors, such as growth factors, cytokines, altered fibroblast function and genetic susceptibility, can all interact in a complex way leading to aberrant and fibrotic wound healing after an insult that acts as a trigger. However, also physiological derangement due to LTS could play a role in promoting dysregulated response to laryngo-tracheal mucosal injury, through biomechanical stress and mechanotransduction activation. The aim of this narrative review is to present the state-of-the-art knowledge regarding molecular mechanisms, as well as mechanical and physio-pathological features behind LTS
    corecore