310 research outputs found

    Potentiation of Synaptic GluN2B NMDAR Currents by Fyn Kinase Is Gated through BDNF-Mediated Disinhibition in Spinal Pain Processing

    Get PDF
    In chronic pain states, the neurotrophin brain-derived neurotrophic factor (BDNF) transforms the output of lamina I spinal neurons by decreasing synaptic inhibition. Pain hypersensitivity also depends on N-methyl-D-aspartate receptors (NMDARs) and Src-family kinases, but the locus of NMDAR dysregulation remains unknown. Here, we show that NMDAR-mediated currents at lamina I synapses are potentiated in a peripheral nerve injury model of neuropathic pain. We find that BDNF mediates NMDAR potentiation through activation of TrkB and phosphorylation of the GluN2B subunit by the Src-family kinase Fyn. Surprisingly, we find that Cl−-dependent disinhibition is necessary and sufficient to prime potentiation of synaptic NMDARs by BDNF. Thus, we propose that spinal pain amplification is mediated by a feedforward mechanism whereby loss of inhibition gates the increase in synaptic excitation within individual lamina I neurons. Given that neither disinhibition alone nor BDNF-TrkB signaling is sufficient to potentiate NMDARs, we have discovered a form of molecular coincidence detection in lamina I neurons

    Fyn Kinase regulates GluN2B subunit-dominant NMDA receptors in human induced pluripotent stem cell-derived neurons

    Get PDF
    NMDA receptor (NMDAR)-mediated fast excitatory neurotransmission is implicated in a broad range of physiological and pathological processes in the mammalian central nervous system. The function and regulation of NMDARs have been extensively studied in neurons from rodents and other non-human species, and in recombinant expression systems. Here, we investigated human NMDARs in situ by using neurons produced by directed differentiation of human induced pluripotent stem cells (iPSCs). The resultant cells showed electrophysiological characteristics demonstrating that they are bona fide neurons. In particular, human iPSC-derived neurons expressed functional ligand-gated ion channels, including NMDARs, AMPA receptors, GABAA receptors, as well as glycine receptors. Pharmacological and electrophysiological properties of NMDAR-mediated currents indicated that these were dominated by receptors containing GluN2B subunits. The NMDAR currents were suppressed by genistein, a broad-spectrum tyrosine kinase inhibitor. The NMDAR currents were also inhibited by a Fyn-interfering peptide, Fyn(39-57), but not a Src-interfering peptide, Src(40-58). Together, these findings are the first evidence that tyrosine phosphorylation regulates the function of NMDARs in human iPSC-derived neurons. Our findings provide a basis for utilizing human iPSC-derived neurons in screening for drugs targeting NMDARs in neurological disorders

    Priming of adult incision response by early life injury: neonatal microglial inhibition has persistent but sexually dimorphic effects in adult rats

    Get PDF
    Neonatal hindpaw incision primes developing spinal nociceptive circuitry, resulting in enhanced hyperalgesia following re-injury in adulthood. Spinal microglia contribute to this persistent effect and microglial inhibition at the time of adult re-incision blocks the enhanced hyperalgesia. Here, we pharmacologically inhibited microglial function with systemic minocycline or intrathecal SB203580 at the time of neonatal incision and evaluated sex-dependent differences following adult re-incision. Incision in adult male and female rats induced equivalent hyperalgesia and spinal dorsal horn expression of genes associated with microglial proliferation (Emr1) and transformation to a reactive phenotype (Irf8). In control adults with prior neonatal incision, the enhanced degree and duration of incision-induced hyperalgesia and spinal microglial responses to re-incision were equivalent in males and females. However, microglial inhibition at the time of the neonatal incision revealed sex-dependent effects: the persistent mechanical and thermal hyperalgesia following re-incision in adulthood was prevented in males but unaffected in females. Similarly, re-incision induced Emr1 and Irf8 gene expression was downregulated in males, but not in females following neonatal incision with minocycline. To evaluate the distribution of re-incision hyperalgesia, prior neonatal incision was performed at different body sites. Hyperalgesia was maximal when the same paw was re-incised, and was increased following prior incision at ipsilateral, but not contralateral sites; supporting a segmentally restricted spinal mechanism. These data highlight the contribution of spinal microglial mechanisms to persistent effects of early-life injury in males, and sex-dependent differences in the ability of microglial inhibition to prevent the transition to a persistent pain state spans developmental stages.Significant Statement: Following the same surgery, some patients develop persistent pain. Contributory mechanisms are not fully understood, but early-life experience and sex/gender may influence the transition to chronic pain. Surgery and painful procedural interventions in vulnerable preterm neonates are associated with long-term alterations in somatosensory function and pain that differ in males and females. Surgical injury in neonatal rodents primes the developing nociceptive system and enhances re-injury response in adulthood. Neuroimmune interactions are critical mediators of persistent pain, but sex-dependent differences in spinal neuroglial signaling influence the efficacy of microglial inhibitors following adult injury. Neonatal microglial inhibition has beneficial long-term effects on re-injury response in adult males only, emphasizing the importance of evaluating sex-dependent differences at all ages in pre-clinical studies

    Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cannabinoid receptor type 2 (CBR2) inhibits microglial reactivity through a molecular mechanism yet to be elucidated. We hypothesized that CBR2 activation induces an anti-inflammatory phenotype in microglia by inhibiting extracellular signal-regulated kinase (ERK) pathway, via mitogen-activated protein kinase-phosphatase (MKP) induction. MKPs regulate mitogen activated protein kinases, but their role in the modulation of microglial phenotype is not fully understood.</p> <p>Results</p> <p>JWH015 (a CBR2 agonist) increased MKP-1 and MKP-3 expression, which in turn reduced p-ERK1/2 in LPS-stimulated primary microglia. These effects resulted in a significant reduction of tumor necrosis factor-α (TNF) expression and microglial migration. We confirmed the causative link of these findings by using MKP inhibitors. We found that the selective inhibition of MKP-1 by Ro-31-8220 and PSI2106, did not affect p-ERK expression in LPS+JWH015-treated microglia. However, the inhibition of both MKP-1 and MKP-3 by triptolide induced an increase in p-ERK expression and in microglial migration using LPS+JWH015-treated microglia.</p> <p>Conclusion</p> <p>Our results uncover a cellular microglial pathway triggered by CBR2 activation. These data suggest that the reduction of pro-inflammatory factors and microglial migration via MKP-3 induction is part of the mechanism of action of CBR2 agonists. These findings may have clinical implications for further drug development.</p

    The Dutch disease revisited : absorption constraint and learning by doing

    Get PDF
    This paper revisits the Dutch disease by analyzing the general equilibrium effects of a resource shock on a dependent economy, both in a static and dynamic set- ting. The novel aspect of this study is to incorporate in one coherent framework two distinct features of the Dutch disease literature that have previously been analyzed in isolation: capital accumulation with absorption constraint, and productivity growth induced by learning-by-doing. The result of long run exchange rate appreciation is maintained in line with part of the Dutch Disease literature. In addition, a permanent change in the employment shares occurs after the resource windfall, in favor of the non-traded sector and away from the traded sector growth engine of the economy. In other words, in the long run both of the classic symptoms of the Dutch Disease remain in place.info:eu-repo/semantics/publishedVersio

    Appointing Women to Boards: Is There a Cultural Bias?

    Get PDF
    Companies that are serious about corporate governance and business ethics are turning their attention to gender diversity at the most senior levels of business (Institute of Business Ethics, Business Ethics Briefing 21:1, 2011). Board gender diversity has been the subject of several studies carried out by international organizations such as Catalyst (Increasing gender diversity on boards: Current index of formal approaches, 2012), the World Economic Forum (Hausmann et al., The global gender gap report, 2010), and the European Board Diversity Analysis (Is it getting easier to find women on European boards? 2010). They all lead to reports confirming the overall relatively low proportion of women on boards and the slow pace at which more women are being appointed. Furthermore, the proportion of women on corporate boards varies much across countries. Based on institutional theory, this study hypothesizes and tests whether this variation can be attributed to differences in cultural settings across countries. Our analysis of the representation of women on boards for 32 countries during 2010 reveals that two cultural characteristics are indeed associated with the observed differences. We use the cultural dimensions proposed by Hofstede (Culture’s consequences: International differences in work-related values, 1980) to measure this construct. Results show that countries which have the greatest tolerance for inequalities in the distribution of power and those that tend to value the role of men generally exhibit lower representations of women on boards

    Neuronal circuitry for pain processing in the dorsal horn

    Get PDF
    Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region

    Platelet Function in Acute Experimental Pancreatitis

    Get PDF
    Acute pancreatitis (AP) is characterized by disturbances of pancreatic microcirculation. It remains unclear whether platelets contribute to these perfusion disturbances. The aim of our study was to investigate platelet activation and function in experimental AP. Acute pancreatitis was induced in rats: (1) control (n = 18; Ringer’s solution), (2) mild AP (n = 18; cerulein), and (3) severe AP (n = 18; glycodeoxycholic acid (GDOC) + cerulein). After 12 h, intravital microscopy was performed. Rhodamine-stained platelets were used to investigate velocity and endothelial adhesion in capillaries and venules. In addition, erythrocyte velocity and leukocyte adhesion were evaluated. Serum amylase, thromboxane A2, and histology were evaluated after 24 h in additional animals of each group. Results showed that 24 h after cerulein application, histology exhibited a mild AP, whereas GDOC induced severe necrotizing AP. Intravital microscopy showed significantly more platelet–endothelium interaction, reduced erythrocyte velocity, and increased leukocyte adherence in animals with AP compared to control animals. Thromboxane levels were significantly elevated in all AP animals and correlated with the extent of platelet activation and severity of AP. In conclusion, platelet activation plays an important role in acute, especially necrotizing, pancreatitis. Mainly temporary platelet–endothelium interaction is observed during mild AP, whereas severe AP is characterized by firm adhesion with consecutive coagulatory activation and perfusion failure

    Site-specific analysis of gene expression in early osteoarthritis using the Pond-Nuki model in dogs

    Get PDF
    BACKGROUND: Osteoarthritis (OA) is a progressive and debilitating disease that often develops from a focal lesion and may take years to clinically manifest to a complete loss of joint structure and function. Currently, there is not a cure for OA, but early diagnosis and initiation of treatment may dramatically improve the prognosis and quality of life for affected individuals. This study was designed to determine the feasibility of analyzing changes in gene expression of articular cartilage using the Pond-Nuki model two weeks after ACL-transection in dogs, and to characterize the changes observed at this time point. METHODS: The ACL of four dogs was completely transected arthroscopically, and the contralateral limb was used as the non-operated control. After two weeks the dogs were euthanatized and tissues harvested from the tibial plateau and femoral condyles of both limbs. Two dogs were used for histologic analysis and Mankin scoring. From the other two dogs the surface of the femoral condyle and tibial plateau were divided into four regions each, and tissues were harvested from each region for biochemical (GAG and HP) and gene expression analysis. Significant changes in gene expression were determined using REST-XL, and Mann-Whitney rank sum test was used to analyze biochemical data. Significance was set at (p < 0.05). RESULTS: Significant differences were not observed between ACL-X and control limbs for Mankin scores or GAG and HP tissue content. Further, damage to the tissue was not observed grossly by India ink staining. However, significant changes in gene expression were observed between ACL-X and control tissues from each region analyzed, and indicate that a unique regional gene expression profile for impending ACL-X induced joint pathology may be identified in future studies. CONCLUSION: The data obtained from this study lend credence to the research approach and model for the characterization of OA, and the identification and validation of future diagnostic modalities. Further, the changes observed in this study may reflect the earliest changes in AC reported during the development of OA, and may signify pathologic changes within a stage of disease that is potentially reversible
    • …
    corecore