4,792 research outputs found

    Medium Modification of the Jet Properties

    Full text link
    In the case that a dense medium is created in a heavy ions collision, high-E_t jets are expected to be broadened by medium-modified gluon emission. This broadening is directly related, through geometry, to the energy loss measured in inclusive high-p_t particle suppression. We present here the modifications of jet observables due to the presence of a medium for the case of azimuthal jet energy distributions and k_t-differential multiplicities inside the jets.Comment: 4 pages, 3 postscript figures. Proceedings for Quark Matter 200

    Dual Formulation of the Lie Algebra S-expansion Procedure

    Full text link
    The expansion of a Lie algebra entails finding a new, bigger algebra G, through a series of well-defined steps, from an original Lie algebra g. One incarnation of the method, the so-called S-expansion, involves the use of a finite abelian semigroup S to accomplish this task. In this paper we put forward a dual formulation of the S-expansion method which is based on the dual picture of a Lie algebra given by the Maurer-Cartan forms. The dual version of the method is useful in finding a generalization to the case of a gauge free differential algebra, which in turn is relevant for physical applications in, e.g., Supergravity. It also sheds new light on the puzzling relation between two Chern-Simons Lagrangians for gravity in 2+1 dimensions, namely the Einstein-Hilbert Lagrangian and the one for the so-called "exotic gravity".Comment: 12 pages, no figure

    Low-pT Collective Flow Induces High-pT Jet Quenching

    Full text link
    Data on low-pT hadronic spectra are widely regarded as evidence of a hydrodynamic expansion in nucleus-nucleus collisions. In this interpretation, different hadron species emerge from a common medium that has built up a strong collective velocity field. Here, we show that the existence of a collective flow field implies characteristic modifications of high-pT parton fragmentation. We generalize the formalism of parton energy loss to the case of flow-induced, oriented momentum transfer. We also discuss how to embed this calculation in hydrodynamic simulations. Flow effects are found to result generically in characteristic asymmetries in the eta-phi-plane of jet energy distributions and of multiplicity distributions associated to high-pT trigger particles. But collective flow also contributes to the medium-induced suppression of single inclusive high-pT hadron spectra. In particular, we find that low-pT elliptic flow can induce a sizeable additional contribution to the high-pT azimuthal asymmetry by selective elimination of those hard partons which propagate with significant inclination against the flow field. This reduces at least partially the recently observed problem that models of parton energy loss tend to underpredict the large azimuthal asymmetry v2 of high-pT hadronic spectra in semi-peripheral Au+Au collisions.Comment: 26 pages LaTeX, 11 eps-figure

    Sustainability transition in industry 4.0 and smart manufacturing with the triple-layered business model canvas

    Get PDF
    Sustainability transition is becoming increasingly relevant at a manufacturing level, especially for resource- and energy-intensive industries. In addition, the 4.0 industry paradigm opens new opportunities in terms of sustainable development. The aim of this research is to analyze the introduction of sustainability in the corporate value proposition, through the evolution from a traditional to a sustainable business model. The business model innovation will be investigated in the case of a ceramic tile producer in the district of Sassuolo, Italy. The company has introduced several sustainability practices over the years and, through investments in Industry 4.0 technologies, is able to conduct impact assessments of its production process. The applied tool for the business model transition will be the Triple-Layered Business Model Canvas by Joyce and Paquin. The results illustrate the new company's sustainable value proposition, considering all three pillars of sustainability: environment, economy, and society. Despite the limitations resulting from the individual case study, the findings can be easily adapted to other ceramic tile companies in the sector. Besides, the paper could inspire other manufacturing companies in the drafting of a sustainable business model. The paper explores the still limited literature on the application of sustainable business models in operational scenarios

    Characterization of chitosan and polycaprolactone membranes designed for wound repair application

    Get PDF
    Polycaprolactone (PCL) and chitosan (Ch) are nontoxic, biocompatible, and biodegradable polymers of vast interest for wound repair. The aim of this work was to prepare Ch/PCL membranes in different proportions (90:10 and 80:20 w/w) in the presence and absence of the surfactant Pluronic F68 (PF68). The membranes were evaluated regarding morphology, thermal behavior, and viscoelastic properties. Sample swelling and degradation in phosphate-buffered saline (PBS), simulated body fluid (SBF), and fetal bovine serum (FBS) were determined by differential scanning calorimetry (DSC) and dynamical mechanical analysis (DMA), while cell toxicity to L929 and Vero fibroblasts was evaluated using the MTT reduction assay and cell proliferation, by DNA quantification and confocal laser microscopy. After 60 days in SBF, marked Ch matrix loss and advanced degradation of PCL particles were noticed by scanning electron microscopy (SEM). No significant differences in melting temperature (Tm) and enthalpy (DHm) were detected by DSC. However, the surfactant increased the DHm. After 30 days, the membranes obtained in the presence of PF68 had absorbed more blood serum and were more degraded after exposure to simulated blood fluid for 30 days. All membranes had low cytotoxicity, and higher cell proliferation was noticed for samples obtained in the presence of the surfactant. In conclusion, the Ch/PCL membranes showed satisfactory degradability and biocompatibility, which enhances their potential for application in wound repair.The authors thank the PhD student Sofia Caridade (3B's Research Group-Universidade do Minho, Portugal) for her assistance in the DMA analyses. The financial support provided by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq-150984/2009-0) in Brazil is gratefully acknowledged for this work

    Thermoelectric simulation of electric machines with permanent magnets

    Get PDF
    The objective of this work is to describe some numerical tools developed to perform the thermoelectric simulation of electric machines. From the electromagnetic point of view, we will focus on the computation of nonlinear 2D transient magnetic fields where the data concerning the electric current sources involve potential drops excitations. From the thermal point of view, once the electromagnetic losses are known, we will show an application of a Galerkin lumped parameter method (GLPM) to simulate the thermal behavior of an electric motor. The proposed methods are applied to the simulation of a permanent magnet synchronous electric motor

    Solving the problem of SANS instrument optimization

    Full text link

    Symmetries and conservation laws in the Gunther k-symplectic formalism of field theory

    Get PDF
    This paper is devoted to studying symmetries of k-symplectic Hamiltonian and Lagrangian first-order classical field theories. In particular, we define symmetries and Cartan symmetries and study the problem of associating conservation laws to these symmetries, stating and proving Noether's theorem in different situations for the Hamiltonian and Lagrangian cases. We also characterize equivalent Lagrangians, which lead to an introduction of Lagrangian gauge symmetries, as well as analyzing their relation with Cartan symmetries.Comment: 29 page
    corecore