52 research outputs found

    Immunization with syngeneic interferon-gamma (IFN-g) secreting tumour cells enhance the Therapeutic effect and Abscopal effect from combined treatment of subcutaneously implanted contra-lateral N29 tumours on Fischer rats with Pulsed electric fields (PEF) and 60Co-gamma radiation.

    Get PDF
    The aim of the present study is to study the Abscopal regression of subcutaneously implanted N29 rat glioma after immunization with syngeneic IFNg secreting cells and treatment of contra-lateral tumours with pulsed electric fields (PEF) and/or radiation therapy (RT). The study was performed on rats of the Fischer-344 strain with rat glioma N29 tumours implanted subcutaneously on the flank or on both the right treated hind leg and the left untreated hind leg. Once weekly for three weeks, the animals were given intra-peritoneal injections of irradiated, modified N29 tumour cells, secreting interferon-gamma (IFN-g). PEF was given with 16 exponentially decaying pulses at a maximum electric fields strength of 1400 V/cm and t1/e= 1 ms. RT was given with 60Co gamma radiation at daily fractions of 5 Gy, to a total absorbed dose of 20 Gy. The animals were arranged into controls and groups of various treatments: PEF, RT, PEF+RT and immunization (IFNg). Fitting the data obtained from consecutive measurements of tumour volume (TV) of each individual tumour to an exponential model TV = TV0*exp[TGR*t] estimated the tumours growth rate (TGR %per day) after the day of treatment (t = 0). TGR of the right-lateral treated tumour was significantly decreased for independent treatments with PEF and RT and with the combined treatment PEF+RT. With immunization (IFNg) alone and in combination with PEF there was, however, no significant decrease of the TGR of the right-lateral tumours. But in the combination of immunization with RT or PEF+RT there was a highly significant decrease of the TGR values. The Abscopal effect was evaluated by comparing the growth rate of the untreated contra lateral tumours with the treated tumours. TGR of the left-lateral untreated tumour in the groups with independent treatment of right-lateral tumours with PEF, was not significantly reduced. But the TGR values are significantly reduced in the group of rats treated with RT and the combination PEF + RT. With IFNg alone and in combinations with PEF or RT there was no significant decrease of the TGR in the left lateral tumours. But in the combination of IFNg with PEF+RT there was a highly significant decrease of the TGR values in the left lateral tumours. The specific therapeutic effect (STE = 1 - TGRExposed/ TGRCtrl ) after treatments with PEF was 0.30±0.01 and after RT 0.46±0.04 and after the combination PEF+RT 0.36+/- 0.08. After immunization with IFNg secreting tumour cells the STE 0.09+/- 0.07 is not significantly different from zero. Also for the combination of immunization and PEF the STE value of 0.07+/- 0.07 is not significantly different from zero. In the combination of immunization with RT the STE value was 0.32+/- 0.01 that is significantly different from zero and only slightly lower than for RT alone. The STE of the combination of immunization with (PEF+RT) resulted in an unexpectedly high STE value of 0.70+/- 0.08 that is highly significantly different from zero (p < 0.0001). The specific Abscopal effect (SAE = 1 - TGRUn-Exposed/ TGRCtrl ) of the contra lateral unexposed tumours in rats treated with PEF or RT are both significantly different from zero. For RT the average SAE value is 0.33+/- 0.04 and for PEF it is 0.11+/- 0.05. The SAE value for the combined treatment with PEF + RT is 0.26+/- 0.02 that is about the same as for RT alone. For immunization with IFNg secreting tumour cells only and IFNg +PEF the SAE values were not significantly different from zero. But IFNg combined with RT result in a SAE value of 0.18±0.12 and the combination of IFNg with PEF+RT results in an improved abscopal effect with the SAE value of 0.33+/- 0.06. After combined treatment with PEF + RT the average of the therapeutic enhancement ratio (TER = STEExperimental / STEIndependent) is 0.47 +/- 0.12 and the abscopal enhancement ratio (AER = SAEExperimental / SAEIndependent) is 0.61 +/- 0.1 respectively. With all three treatment modalities combined IFNg + PEF + RT and all combinations of independent treatments with PEF, RT or IFNg are considered, the average of the TER is 1.20+/- 0.15 and AER is 1.22+/- 0.20. This might indicate that there is a synergism on the tumours on both sides by combining PEF, RT and immunization with IFNg secreting cells. These results were first presented Nov 21-24, 2002, as Poster at Society of Neuro-Oncology (SNO) Annual Meeting, San Diego, USA (Persson et al 2002)

    Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones.

    Get PDF
    The possible risks of radio-frequency electromagnetic fields for the human body is a growing concern for our society. We have previously shown that weak pulsed microwaves give rise to a significant leakage of albumin through the blood-brain barrier. In this study we investigated whether a pathologic leakage across the blood-brain barrier might be combined with damage to the neurons. Three groups each of eight rats were exposed for 2 hr to Global System for Mobile Communications (GSM) mobile phone electromagnetic fields of different strengths. We found highly significant (p< 0.002) evidence for neuronal damage in the cortex, hippocampus, and basal ganglia in the brains of exposed rats

    Microwaves from GSM Mobile Telephones Affect 53BP1 and γ-H2AX Foci in Human Lymphocytes from Hypersensitive and Healthy Persons

    Get PDF
    The data on biologic effects of nonthermal microwaves (MWs) from mobile telephones are diverse, and these effects are presently ignored by safety standards of the International Commission for Non-Ionizing Radiation Protection (ICNIRP). In the present study, we investigated effects of MWs of Global System for Mobile Communication (GSM) at different carrier frequencies on human lymphocytes from healthy persons and from persons reporting hypersensitivity to electromagnetic fields (EMFs). We measured the changes in chromatin conformation, which are indicative of stress response and genotoxic effects, by the method of anomalous viscosity time dependence, and we analyzed tumor suppressor p53-binding protein 1 (53BP1) and phosphorylated histone H2AX (γ-H2AX), which have been shown to colocalize in distinct foci with DNA double-strand breaks (DSBs), using immunofluorescence confocal laser microscopy. We found that MWs from GSM mobile telephones affect chromatin conformation and 53BP1/γ-H2AX foci similar to heat shock. For the first time, we report here that effects of MWs from mobile telephones on human lymphocytes are dependent on carrier frequency. On average, the same response was observed in lymphocytes from hypersensitive and healthy subjects

    Microwaves from Mobile Phones Inhibit 53BP1 Focus Formation in Human Stem Cells More Strongly Than in Differentiated Cells: Possible Mechanistic Link to Cancer Risk

    Get PDF
    BACKGROUND: It is widely accepted that DNA double-strand breaks (DSBs) and their misrepair in stem cells are critical events in the multistage origination-of various leukemias and tumors, including gliomas. OBJECTIVES: We studied whether microwaves from mobile telephones of the Global System for Mobile Communication (GSM) and the Universal Global Telecommunications System (UMTS) induce DSBs or affect DSB repair in stem cells. METHODS: We analyzed tumor suppressor TP53 binding protein 1 (53BP1) foci that are typically formed at the sites of DSB location (referred to as DNA repair foci) by laser confocal microscopy. RESULTS: Microwaves from mobile phones inhibited formation of 53BP1 foci in human primary fibroblasts and mesenchymal stem cells. These data parallel our previous findings for human lymphocytes. Importantly, the same GSM carrier frequency (915 MHz) and UMTS frequency band (1947.4 MHz) were effective for all cell types. Exposure at 905 MHz did not inhibit 53BP1 foci in differentiated cells, either fibroblasts or lymphocytes, whereas some effects were seen in stem cells at 905 MHz. Contrary to fibroblasts, stem cells did not adapt to chronic exposure during 2 weeks. CONCLUSIONS: The strongest microwave effects were always observed in stem cells. This result may suggest both significant misbalance in DSB repair and severe stress response. Our findings that stem cells are most sensitive to microwave exposure and react to more frequencies than do differentiated cells may be important for cancer risk assessment and indicate that stem cells are the most relevant cellular model for validating safe mobile communication signals

    Requirements for a clinical electrochemotherapy device - electroporator

    Get PDF
    electroporato

    Efficacy of Electrochemotherapy with Bleomycin to the Murine Osteosarcoma Model

    Get PDF
    Background : Electrochemotherapy is an unique treatment to enhance the drug permeability of tumor cells. It is believed that osteosarcoma lacks the membrane proteins, which constitutes an obstacle in achieving drug transport for chemotherapy. We performed the electrochemotherapy with bleomycin to evaluate the efficacy of the treatment in an animal model of osteosarcoma. The tumor response, tissue concentration of bleomycin and histology were analyzed.Materials and Methods : SCID mice that had been subcutaneously implanted with osteosarcoma cells were subjected to electroporation, bleomycin, both or with no treatment as a control.Results : Cells cycle arrest and growth inhibiton were observed in the murine osteosarcoma only in the electroporation with bleomycin plus group. The tissue concentrations of bleomycin were high in the bleomycin plus group and low in the bleomycin alone group.Conclusion : The present study indicates that electrochemotherapy with bleomycin may be an effective treatment for osteosarcom
    corecore