3,277 research outputs found

    Possible mechanism for achieving glass-like thermal conductivities in crystals with off-center atoms

    Full text link
    In the filled Ga/Ge clathrate, Eu and Sr are off-center in site 2 but Ba is on-center. All three filler atoms (Ba,Eu,Sr) have low temperature Einstein modes; yet only for the Eu and Sr systems is there a large dip in the thermal conductivity, attributed to the Einstein modes. No dip is observed for Ba. Here we argue that it is the off-center displacement that is crucial for understanding this unexplained difference in behavior. It enhances the coupling between the "rattler" motion and the lattice phonons for the Eu and Sr systems, and turns on/off another scattering mechanism (for 1K < T < 20K) produced by the presence/absence of off-center sites. The random occupation of different off-center sites produces a high density of symmetry-breaking defects which scatters phonons. It may also be important for improving our understanding of other glassy systems.Comment: 4 pages, 1 figure (2 parts) -- v2: intro broadened; strengthened arguments regarding need for additional phonon scattering mechanis

    Lattice dynamics and reduced thermal conductivity of filled skutterudites

    Full text link
    The great reduction in thermal conductivity of skutterudites upon filling the ``void'' sites with Rare Earth (RE) ions is key to their favorable thermoelectric properties but remains to be understood. Using lattice dynamic models based on first principles calculations, we address the most popular microscopic mechanism, reduction via rattling ions. The model withstands inelastic neutron scattering and specific heat measurements, and refutes hypotheses of an anharmonic RE potential and of two distinct localized RE vibrations of disparate frequencies. It does indicate a strong hybridization between bare La vibrations and certain Sb-like phonon branches, suggesting anharmonic scattering by harmonic RE motions as an important mechanism for suppression of heat conductivity.Comment: modified version resubmitted to PRB. Results unchanged, text changed substantiall

    Excitons in coupled InAs/InP self-assembled quantum wires

    Get PDF
    Optical transitions in coupled InAs/InP self-assembled quantum wires are studied within the single-band effective mass approximation including effects due to strain. Both vertically and horizontally coupled quantum wires are investigated and the ground state, excited states and the photoluminescence peak energies are calculated. Where possible we compare with available photo-luminescence data from which it was possible to determine the height of the quantum wires. An anti-crossing of the energy of excited states is found for vertically coupled wires signaling a change of symmetry of the exciton wavefunction. This crossing is the signature of two different coupling regimes.Comment: 8 pages, 8 figures. To appear in Physical Review

    Module identification in bipartite and directed networks

    Full text link
    Modularity is one of the most prominent properties of real-world complex networks. Here, we address the issue of module identification in two important classes of networks: bipartite networks and directed unipartite networks. Nodes in bipartite networks are divided into two non-overlapping sets, and the links must have one end node from each set. Directed unipartite networks only have one type of nodes, but links have an origin and an end. We show that directed unipartite networks can be conviniently represented as bipartite networks for module identification purposes. We report a novel approach especially suited for module detection in bipartite networks, and define a set of random networks that enable us to validate the new approach
    • …
    corecore