3,909 research outputs found
Almost Hermitian Geometry on Six Dimensional Nilmanifolds
The fundamental 2-form of an invariant almost Hermitian structure on a
6-dimensional Lie group is described in terms of an action by SO(4)xU(1) on
complex projective 3-space. This leads to a combinatorial description of the
classes of almost Hermitian structures on the Iwasawa and other nilmanifolds.Comment: 22 pages, 2 figure
Torsion, TQFT, and Seiberg-Witten invariants of 3-manifolds
We prove a conjecture of Hutchings and Lee relating the Seiberg-Witten
invariants of a closed 3-manifold X with b_1 > 0 to an invariant that `counts'
gradient flow lines--including closed orbits--of a circle-valued Morse function
on the manifold. The proof is based on a method described by Donaldson for
computing the Seiberg-Witten invariants of 3-manifolds by making use of a
`topological quantum field theory,' which makes the calculation completely
explicit. We also realize a version of the Seiberg-Witten invariant of X as the
intersection number of a pair of totally real submanifolds of a product of
vortex moduli spaces on a Riemann surface constructed from geometric data on X.
The analogy with recent work of Ozsvath and Szabo suggests a generalization of
a conjecture of Salamon, who has proposed a model for the Seiberg-Witten-Floer
homology of X in the case that X is a mapping torus.Comment: Published by Geometry and Topology at
http://www.maths.warwick.ac.uk/gt/GTVol6/paper2.abs.htm
Reversible Superconductivity in Electrochromic Indium-Tin Oxide Films
Transparent conductive indium tin oxide (ITO) thin films, electrochemically
intercalated with sodium or other cations, show tunable superconducting
transitions with a maximum at 5 K. The transition temperature and the
density of states, (extracted from the measured Pauli susceptibility
exhibit the same dome shaped behavior as a function of electron
density. Optimally intercalated samples have an upper critical field T and . Accompanying the development of
superconductivity, the films show a reversible electrochromic change from
transparent to colored and are partially transparent (orange) at the peak of
the superconducting dome. This reversible intercalation of alkali and alkali
earth ions into thin ITO films opens diverse opportunities for tunable,
optically transparent superconductors
Nanoscale magnetic structure of ferromagnet/antiferromagnet manganite multilayers
Polarized Neutron Reflectometry and magnetometry measurements have been used
to obtain a comprehensive picture of the magnetic structure of a series of
La{2/3}Sr{1/3}MnO{3}/Pr{2/3}Ca{1/3}MnO{3} (LSMO/PCMO) superlattices, with
varying thickness of the antiferromagnetic (AFM) PCMO layers (0<=t_A<=7.6 nm).
While LSMO presents a few magnetically frustrated monolayers at the interfaces
with PCMO, in the latter a magnetic contribution due to FM inclusions within
the AFM matrix was found to be maximized at t_A~3 nm. This enhancement of the
FM moment occurs at the matching between layer thickness and cluster size,
where the FM clusters would find the optimal strain conditions to be
accommodated within the "non-FM" material. These results have important
implications for tuning phase separation via the explicit control of strain.Comment: 4 pages, submitted to PR
EUV and X-ray spectroheliograph study
The results of a program directed toward the definition of an EUV and X-ray spectroheliograph which has significant performance and operational improvements over the OSO-7 instrument are documented. The program investigated methods of implementing selected changes and incorporated the results of the study into a set of drawings which defines the new instrument. The EUV detector performance degradation observed during the OSO-7 mission was investigated and the most probable cause of the degradation identified
Comment on ``Cosmological Gamma Ray Bursts and the Highest Energy Cosmic Rays''
In a letter with the above title, published some time ago in PRL, Waxman made
the interesting suggestion that cosmological gamma ray bursts (GRBs) are the
source of the ultra high energy cosmic rays (UHECR). This has also been
proposed independently by Milgrom and Usov and by Vietri. However, recent
observations of GRBs and their afterglows and in particular recent data from
the Akeno Great Air Shwoer Array (AGASA) on UHECR rule out extragalactic GRBs
as the source of UHECR.Comment: Comment on a letter with the above title published by E. Waxman in
PRL 75, 386 (1995). Submitted for publication in PRL/Comment
Observation of the spontaneous vortex phase in the weakly ferromagnetic superconductor ErNiBC: A penetration depth study
The coexistence of weak ferromagnetism and superconductivity in ErNiBC suggests the possibility of a spontaneous vortex phase (SVP) in which
vortices appear in the absence of an external field. We report evidence for the
long-sought SVP from the in-plane magnetic penetration depth of high-quality single crystals of ErNiBC. In addition to
expected features at the N\'{e}el temperature = 6.0 K and weak
ferromagnetic onset at K, rises to a maximum
at K before dropping sharply down to 0.1 K. We assign the
0.45 K-maximum to the proliferation and freezing of spontaneous vortices. A
model proposed by Koshelev and Vinokur explains the increasing as a consequence of increasing vortex density, and its subsequent decrease
below as defect pinning suppresses vortex hopping.Comment: 5 pages including figures; added inset to Figure 2; significant
revisions to tex
A -Vertex Kernel for Maximum Internal Spanning Tree
We consider the parameterized version of the maximum internal spanning tree
problem, which, given an -vertex graph and a parameter , asks for a
spanning tree with at least internal vertices. Fomin et al. [J. Comput.
System Sci., 79:1-6] crafted a very ingenious reduction rule, and showed that a
simple application of this rule is sufficient to yield a -vertex kernel.
Here we propose a novel way to use the same reduction rule, resulting in an
improved -vertex kernel. Our algorithm applies first a greedy procedure
consisting of a sequence of local exchange operations, which ends with a
local-optimal spanning tree, and then uses this special tree to find a
reducible structure. As a corollary of our kernel, we obtain a deterministic
algorithm for the problem running in time
- …