6,024 research outputs found
Age effects in mental rotation are due to the use of a different strategy
Older participants are slower than younger individuals in rotating objects in their minds. One possible explanation for this age effect in mental rotation (MR) relies on the different strategies used. To explore this possiblity, in the present study, younger and older participants were assessed with two MR tasks with three- (Exp.1) and two-dimensional objects (Exp.2)with different complexity levels. In both experiments, the performance of the two age groups was comparable in simple objects. However, systematic differences were observed between the MR rates of younger and older adults while processing complex objects. Younger participants were faster in processing complex than simple objects, whereas older participants were slower in rotating complex as compared to simple objects. These results revealed that different strategies were selected by the two age groups when rotating complex objects. A simplified representation of the objects was transformed by younger participants, while older participants rotated the objects piece-by-piece
Metabolic and functional consequences of cytosolic 5′-nucleotidase-IA overexpression in neonatal rat cardiomyocytes
Adenosine exerts a spectrum of energy-preserving actions on the heart negative chronotropic effects. The pathways leading to adenosine formation have remained controversial. In particular, although cytosolic 5′-nucleotidases can catalyze adenosine formation in cardiomyocytes, their contribution to the actions of adenosine has not been documented previously. We recently cloned two closely related AMP-preferring cytosolic 5′-nucleotidases (cN-IA and -IB); the A form predominates in the heart. In this study, we overexpressed pigeon cN-IA in neonatal rat cardiomyocytes using an adenovirus. cN-IA overexpression increased adenosine formation and release into the medium caused by simulated hypoxia and by isoproterenol in the absence and presence of inhibitors of adenosine metabolism. Adenosine release was not affected by an ecto-5′-nucleotidase inhibitor, α,β-methylene-ADP, but was affected by a nucleoside transporter, dipyridamole. The positive chronotropic effect of isoproterenol (130 ±3 vs. 100 ±4 beats/min) was inhibited (107 ±3 vs. 94 ±3 beats/min) in cells overexpressing cN-IA, and this was reversed by the addition of the adenosine receptor antagonist 8-(p-sulfophenyl)theophilline (120 ± 3 vs. 90 ± 4 beats/min). Our results demonstrate that overexpressed cN-IA can be sufficiently active in cardiomyocytes to generate physiologically effective concentrations of adenosine at its receptors.Fil: Sala-Newby, Graciela B.. University of Bristol; Reino UnidoFil: Freeman, Nicola V. E.. University of Bristol; Reino UnidoFil: Curto, Maria de Los Angeles. University of Bristol; Reino Unido. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Investigaciones en IngenierĂa GenĂ©tica y BiologĂa Molecular "Dr. HĂ©ctor N. Torres"; ArgentinaFil: Newby, Andrew C.. University of Bristol; Reino Unid
A new search for anomalous neutrino oscillations at the CERN-PS
The LSND experiment has observed a 3.8 sigma excess of anti-nu_e events from
an anti-nu_mu beam coming from pions at rest. If confirmed, the LSND anomaly
would imply new physics beyond the standard model, presumably in the form of
some additional sterile neutrinos. The MiniBooNE experiment at FNAL-Booster has
further searched for the LSND anomaly. Above 475 MeV, the nu_e result is
excluding the LSND anomaly to about 1.6 sigma but it introduces an unexplained,
new 3.0 sigma anomaly at lower energies, down to 200 MeV. The nu_e data have so
far an insufficient statistics to be conclusive with LSND's anti-nu_e. The
present proposal at the CERN-PS is based on two strictly identical LAr-TPC
detectors in the near and far positions, respectively at 127 and 850 m from the
neutrino (or antineutrino) target and focussing horn, observing the
electron-neutrino signal. This project will benefit from the already developed
technology of ICARUS T600, well tested on surface in Pavia, without the need of
any major R&D activity and without the added problems of an underground
experiment (CNGS-2). The superior quality of the Liquid Argon imaging TPC and
its unique electron - pi-zero discrimination allow full rejection of the NC
background, without efficiency loss for electron neutrino detection. In two
years of exposure, the far detector mass of 600 tons and a reasonable
utilization of the CERN-PS with the refurbished previous TT7 beam line will
allow to collect about 10^6 charged current events, largely adequate to settle
definitely the LSND anomaly.Comment: 23 pages, 17 figures, added watermark, better referencin
Highly effective and isotropic pinning in epitaxial Fe(Se,Te) thin films grown on CaF2 substrates
We report on the isotropic pinning obtained in epitaxial Fe(Se,Te) thin films
grown on CaF2 (001) substrate. High critical current density values larger than
1 MA/cm2 in self field in liquid helium are reached together with a very weak
dependence on the magnetic field and a complete isotropy. Analysis through
Transmission Electron Microscopy evidences the presence of defects looking like
lattice disorder at a very small scale, between 5 and 20 nm, which are thought
to be responsible for such isotropic behavior in contrast to what observed on
SrTiO3, where defects parallel to the c-axis enhance pinning in that directio
Fish assemblages across the Mediterranean Sea and the effects of protection from fishing = I Popolamenti ittici nel Mediterraneo e gli effetti della protezione dall’impatto della pesca
Several studies have assessed the effectiveness of individual marine protected areas (MPAs) in protecting fish assemblages, but regional assessments of multiple parks are scarce. Here fish surveys using visual census were done in marine parks and fished areas at 31 locations across
the Mediterranean Sea. Fish species richness, diversity and biomass (especially of top predators) were higher in MPAs compared to fished areas, and community structure differed significantly between MPAs and fished areas. Results suggest that MPAs are generally effective means to protect and recover fish populations and assemblages
Calibrating the dice loss to handle neural network overconfidence for biomedical image segmentation
The Dice similarity coefficient (DSC) is both a widely used metric and loss function for biomedical image segmentation due to its robustness to class imbalance. However, it is well known that the DSC loss is poorly calibrated, resulting in overconfident predictions that cannot be usefully interpreted in biomedical and clinical practice. Performance is often the only metric used to evaluate segmentations produced by deep neural networks, and calibration is often neglected. However, calibration is important for translation into biomedical and clinical practice, providing crucial contextual information to model predictions for interpretation by scientists and clinicians. In this study, we provide a simple yet effective extension of the DSC loss, named the DSC++ loss, that selectively modulates the penalty associated with overconfident, incorrect predictions. As a standalone loss function, the DSC++ loss achieves significantly improved calibration over the conventional DSC loss across six well-validated open-source biomedical imaging datasets, including both 2D binary and 3D multi-class segmentation tasks. Similarly, we observe significantly improved calibration when integrating the DSC++ loss into four DSC-based loss functions. Finally, we use softmax thresholding to illustrate that well calibrated outputs enable tailoring of recall-precision bias, which is an important post-processing technique to adapt the model predictions to suit the biomedical or clinical task. The DSC++ loss overcomes the major limitation of the DSC loss, providing a suitable loss function for training deep learning segmentation models for use in biomedical and clinical practice. Source code is available at https://github.com/mlyg/DicePlusPlus
- …