100 research outputs found

    Increase of total alkalinity due to shoaling of aragonite saturation horizon in the Pacific and Indian Oceans: influence of anthropogenic carbon inputs

    Get PDF
    Aragonite Saturation Horizon (ASH) shallowed significantly by 25 to 155 m and 16 to 124 m in the Pacific and Indian Ocean respectively in two decades. Apparent Oxygen Utilization (AOU) increased by 3 to 34 and 0.5 to 31.5 μmol kg−1 in the Pacific and Indian Ocean respectively at the depth of ASH during this period. DIC increased by 12.5 to 36.8 and 5.5 to 32 μmol kg−1 in the vicinity of ASH in the Pacific and Indian Ocean respectively due to combined effect of increased anthropogenic CO2 and change in AOU. TA increased significantly by 5 to 10 and 4 to 9.2 μmol kg−1 in the Pacific and Indian Oceans respectively at the ASH most likely as a result of aragonite dissolution. The upward migration of ASH solely due to anthropogenic CO2 amounted to 6 to 58 m in the Pacific and 4 to 44 m in the Indian Ocean

    Reappraisal of meridional differences of factors controlling phytoplankton biomass and initial increase preceding seasonal bloom in the northwestern Pacific Ocean

    Get PDF
    Multiplatform observations of ocean biogeochemical data were used to elucidate meridional differences in the factors that limit phytoplankton biomass (Chl-a) and the mechanisms that trigger the seasonal winter or spring phytoplankton bloomin the northwestern Pacific Ocean (NWPO). During the winter, Chl-a north (south) of 30°N is limited by light (nutrients). During the spring and fall, Chl-a in much of the area east of the Japan/Kuril Islands and/or north of 40°N(south of 35°N) is limited by light (nutrients). During the summer, nutrients limit Chl-a over much of the NWPO, except in the areas east of the Japan/Kuril Islands and north of 45°N. In the area south of around 31°N, phytoplankton biomass is nutrient limited throughout the year, and the seasonal bloom emerges in the winter, begins in the fall which is associated with mixed layer deepening. Between 31°N and 40°N, the spring bloom onset is mainly associated with a cessation of mixed layer deepening. In much of the area north of 40°N, including the Oyashio area, the onset of the spring bloom is consistent with Sverdrup’s critical depth hypothesis. The spatial extents of the light- and nutrient-limited areas and the areas associated with a single bloom onset mechanism are by no means constant. They are expected to undergo meridional shifts as a result of large-scale climatic changes and global warming

    Relationship between chlorophyll specific productivity and temperature at the surface in Sagami Bay, Japan

    Get PDF
    Primary production was monthly measured from September 2001 to July 2003 at the surface in Sagami Bay, Japan. Thevariation in the primary production was primarily due to the variation in Pb (chlorophyll specific productivity). The values ofPb positively correlated with temperature. This may be due to relatively low contribution of diatoms in Sagami Bay

    Sixteen-year phytoplankton biomass trends in the northwestern Pacific Ocean observed by the SeaWiFS and MODIS ocean color sensors

    Get PDF
    Using multisensor/platform biophysical data collected from 1997 to 2013, we investigated trends of the concentrations of phytoplankton biomass (Chl) in the northwestern Pacific Ocean (NWPO) and the probable responsible factors. The trend of rising sea surface temperature (SST) was the main factor maintaining phytoplankton positive net growth and resulted in a trend of increasing Chl at high latitudes in all seasons. At latitudes of 36-46°N, east of 160°E, the trend of rising SST was accompanied by a trend of declining Chl, markedly in spring and fall, which could be ascribed to strengthened stratification. The trends of environmental variables in the Oyashio area have modified conditions in a way detrimental to phytoplankton growth, the result being a trend of declining Chl from spring to fall. Chl south of roughly 36°N exhibited different trends in different seasons because of the different trends of vertical stratification. Whereas the observed 16-year Chl trends were not primarily influenced by interannual climate variability, to some degree they were likely modified by decadal variability associated with a weakened Aleutian Low pressure. This work prompts further comprehensive studies to investigate the probable ecological consequences of the observed Chl trend for high-trophic-level marine organisms in the NWPO

    Seasonal variations in the nitrogen isotopic composition of settling particles at station K2 in the western subarctic North Pacific

    Get PDF
    Intensive observations using hydrographical cruises and moored sediment trap deployments during 2010 and 2012 at station K2 in the North Pacific western subarctic gyre (WSG) revealed seasonal changes in δ15N of both suspended and settling particles. Suspended particles (SUS) were collected from depths between the surface and 200 m; settling particles by drifting traps (DST; 100-200 m) and moored traps (MST; 200 and 500 m). All particles showed higher δ15N values in winter and lower in summer, contrary to the expected by isotopic fractionation during phytoplankton nitrate consumption. We suggest that these observed isotopic patterns are due to ammonium consumption via light-controlled nitrification, which could induce variations in δ15N(SUS) of 0.4-3.1 ‰ in the euphotic zone (EZ). The δ15N(SUS) signature was reflected by δ15 N(DST) despite modifications during biogenic transformation from suspended particles in the EZ. δ15 N enrichment (average: 3.6 ‰) and the increase in C:N ratio (by 1.6) in settling particles suggests year-round contributions of metabolites from herbivorous zooplankton as well as TEPs produced by diatoms. Accordingly, seasonal δ15 N(DST) variations of 2.4-7.0 ‰ showed a significant correlation with primary productivity (PP) at K2. By applying the observed δ15 N(DST) vs. PP regression to δ15 N(MST) of 1.9-8.0 ‰, we constructed the first annual time-series of PP changes in the WSG. Moreover, the monthly export ratio at 500 m was calculated using both estimated PP and measured organic carbon fluxes. Results suggest a 1.6 to 1.8 times more efficient transport of photosynthetically-fixed carbon to the intermediate layers occurs in summer/autumn rather than winter/spring

    Dispersion of Artificial Caesium-134 and -137 in the Western North Pacific One Month After the Fukushima Accident

    Get PDF
    In March 2011, an accident at the Fukushima Daiichi nuclear power plant (FNPP) was caused by the Tohoku earthquake and tsunami. Here we show the distribution of artificial caesium-134 and -137 (134Cs and 137Cs) in the western North Pacific one month after the FNPP accident. In surface seawater, 137Cs concentrations were from several times to two orders of magnitude higher than before the FNPP accident. 134Cs was also detected, and in many seawater samples the 134Cs/137Cs ratio was about 1. These findings indicate that radionuclides from the FNPP dispersed quickly in the western North Pacific. 134Cs and 137Cs concentrations in suspended solids and zooplankton at stations K2 and S1 were also one to two orders higher than before the accident. Numerical simulation results show that the higher caesium observed in the western North Pacific one month after the FNPP accident was transported not only by diffusion and advection of seawater but also via the atmosphere as an aerosol.Abstract presented at Ocean Sciences Meeting 2012, the Oceanography Society, ASLO, AGU, Salt Lake City, Utah, Feb. 20-24, 201

    A model for estimating Chlorophyll and SS in coastal area by Satellite Remote Sensing

    No full text

    Fluctuations in productivity and denitrification in the southeastern Arabian Sea during the late Quaternary

    Get PDF
    Sedimentological and stable isotopic characteristics of sediments have been studied in a core from the southeastern Arabian Sea containing records of the past 70 ka. Palaeoproductivity proxies such as organic carbon (Corg), total nitrogen (TN) and calcium carbonate (CaCO3) contents, show high values at the core top and during the Last Glacial Maximum (LGM) and marine isotope stage (MIS) 4, suggesting high productivity, whereas low Corg and CaCO3 contents are associated with the MIS 1/2 and mid-MIS 3, indicating reduced productivity. The δ18O values in planktonic foraminifera range between - 2.7‰ and - 0.1‰, with a large glacial-interglacial amplitude Δδ18O of ~ 2.6‰, suggesting changes related to monsoonal precipitation/runoff. The δ15N values fluctuate between 5.4‰ and 7.3‰, signifying variation in denitrification intensity. The δ15N indicates an overall increase in denitrification intensity during MIS 1 and MIS 3 and, reduced intensity during MIS 1/2, LGM and mid-MISHigher primary productivity and reduced denitrification intensity during LGM and MIS 4 might be due to convective winter mixing and more oxygenated subsurface waters. Reduced primary productivity during MIS 1/2 and mid-MIS 3 might be the effect of enhanced precipitation associated with the intensified southwest monsoon fortifying near-surface stratification
    corecore