134 research outputs found

    Development of recombinant nucleoprotein-based diagnostic systems for lassa fever

    Get PDF
    Diagnostic systems for Lassa fever (LF), a viral hemorrhagic fever caused by Lassa virus (LASV), such as enzyme immunoassays for the detection of LASV antibodies and LASV antigens, were developed using the recombinant nucleoprotein (rNP) of LASV (LASV-rNP). The LASV-rNP was expressed in a recombinant baculovirus system. LASV-rNP was used as an antigen in the detection of LASV-antibodies and as an immunogen for the production of monoclonal antibodies. The LASV-rNP was also expressed in HeLa cells by transfection with the expression vector encoding cDNA of the LASV-NP gene. An immunoglobulin G enzyme-linked immunosorbent assay (ELISA) using LASV-rNP and an indirect immunofluorescence assay using LASV-rNP-expressing HeLa cells were confirmed to have high sensitivity and specificity in the detection of LASV-antibodies. A novel monoclonal antibody to LASV-rNP, monoclonal antibody 4A5, was established. A sandwich antigen capture (Ag-capture) ELISA using the monoclonal antibody and an anti-LASV-rNP rabbit serum as capture and detection antibodies, respectively, was then developed. Authentic LASV nucleoprotein in serum samples collected from hamsters experimentally infected with LASV was detected by the Ag-capture ELISA. The Ag-capture ELISA specifically detected LASV-rNP but not the rNPs of lymphocytic choriomeningitis virus or Junin virus. The sensitivity of the Ag-capture ELISA in detecting LASV antigens was comparable to that of reverse transcription-PCR in detecting LASV RNA. These LASV rNP-based diagnostics were confirmed to be useful in the diagnosis of LF even in institutes without a high containment laboratory, since the antigens can be prepared without manipulation of the infectious viruses.Instituto de Biotecnologia y Biologia Molecula

    Development of recombinant nucleoprotein-based diagnostic systems for lassa fever

    Get PDF
    Diagnostic systems for Lassa fever (LF), a viral hemorrhagic fever caused by Lassa virus (LASV), such as enzyme immunoassays for the detection of LASV antibodies and LASV antigens, were developed using the recombinant nucleoprotein (rNP) of LASV (LASV-rNP). The LASV-rNP was expressed in a recombinant baculovirus system. LASV-rNP was used as an antigen in the detection of LASV-antibodies and as an immunogen for the production of monoclonal antibodies. The LASV-rNP was also expressed in HeLa cells by transfection with the expression vector encoding cDNA of the LASV-NP gene. An immunoglobulin G enzyme-linked immunosorbent assay (ELISA) using LASV-rNP and an indirect immunofluorescence assay using LASV-rNP-expressing HeLa cells were confirmed to have high sensitivity and specificity in the detection of LASV-antibodies. A novel monoclonal antibody to LASV-rNP, monoclonal antibody 4A5, was established. A sandwich antigen capture (Ag-capture) ELISA using the monoclonal antibody and an anti-LASV-rNP rabbit serum as capture and detection antibodies, respectively, was then developed. Authentic LASV nucleoprotein in serum samples collected from hamsters experimentally infected with LASV was detected by the Ag-capture ELISA. The Ag-capture ELISA specifically detected LASV-rNP but not the rNPs of lymphocytic choriomeningitis virus or Junin virus. The sensitivity of the Ag-capture ELISA in detecting LASV antigens was comparable to that of reverse transcription-PCR in detecting LASV RNA. These LASV rNP-based diagnostics were confirmed to be useful in the diagnosis of LF even in institutes without a high containment laboratory, since the antigens can be prepared without manipulation of the infectious viruses.Instituto de Biotecnologia y Biologia Molecula

    Autophagy-Inducing Factor Atg1 Is Required for Virulence in the Pathogenic Fungus Candida glabrata

    Get PDF
    Candida glabrata is one of the leading causes of candidiasis and serious invasive infections in hosts with weakened immune systems. C. glabrata is a haploid budding yeast that resides in healthy hosts. Little is known about the mechanisms of C. glabrata virulence. Autophagy is a \u27self-eating\u27 process developed in eukaryotes to recycle molecules for adaptation to various environments. Autophagy is speculated to play a role in pathogen virulence by supplying sources of essential proteins for survival in severe host environments. Here, we investigated the effects of defective autophagy on C. glabrata virulence. Autophagy was induced by nitrogen starvation and hydrogen peroxide (H2O2) in C. glabrata.A mutant strain lacking CgAtg1, an autophagy-inducing factor, was generated and confirmed to be deficient for autophagy. The Cgatg1Δ strain was sensitive to nitrogen starvation and H2O2, died rapidly in water without any nutrients, and showed high intracellular ROS levels compared with the wild-type strain and the CgATG1-reconstituted strain in vitro. Upon infecting mouse peritoneal macrophages, the Cgatg1Δ strain showed higher mortality from phagocytosis by macrophages. Finally, in vivo experiments were performed using two mouse models of disseminated candidiasis and intra-abdominal candidiasis. The Cgatg1Δ strain showed significantly decreased CFUs in the organs of the two mouse models. These results suggest that autophagy contributes to C. glabrata virulence by conferring resistance to unstable nutrient environments and immune defense of hosts, and that Atg1 is a novel fitness factor in Candida species

    Prevalence of Antibodies to Crimean-Congo Hemorrhagic Fever Virus in Ruminants, Nigeria, 2015.

    Get PDF
    Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly transmissible human pathogen. Infection is often misdiagnosed, in part because of poor availability of data in disease-endemic areas. We sampled 150 apparently healthy ruminants throughout Nigeria for virus seropositivity and detected virus-specific IgG in cattle (24%) and goats (2%), highlighting the need for further investigations

    Detection of viral RNA in diverse body fluids in an SFTS patient with encephalopathy, gastrointestinal bleeding and pneumonia: a case report and literature review

    Get PDF
    BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease that commonly has a lethal course caused by the tick-borne Huaiyangshan banyang virus [former SFTS virus (SFTSV)]. The viral load in various body fluids in SFTS patients and the best infection control measure for SFTS patients have not been fully established. CASE PRESENTATION: A 79-year-old man was bitten by a tick while working in the bamboo grove in Nagasaki Prefecture in the southwest part of Japan. Due to the occurrence of impaired consciousness, he was referred to Nagasaki University Hospital for treatment. The serum sample tested positive for SFTSV-RNA in the genome amplification assay, and he was diagnosed with SFTS. Furthermore, SFTSV-RNA was detected from the tick that had bitten the patient. He was treated with multimodal therapy, including platelet transfusion, antimicrobials, antifungals, steroids, and continuous hemodiafiltration. His respiration was assisted with mechanical ventilation. On day 5, taking the day on which he was hospitalized as day 0, serum SFTSV-RNA levels reached a peak and then decreased. However, the cerebrospinal fluid collected on day 13 was positive for SFTSV-RNA. In addition, although serum SFTSV-RNA levels decreased below the detectable level on day 16, he was diagnosed with pneumonia with computed tomography. SFTSV-RNA was detected in the bronchoalveolar lavage fluid on day 21. By day 31, he recovered consciousness completely. The pneumonia improved by day 51, but SFTSV-RNA in the sputum remained positive for approximately 4 months after disease onset. Strict countermeasures against droplet/contact infection were continuously conducted. CONCLUSIONS: Even when SFTSV genome levels become undetectable in the serum of SFTS patients in the convalescent phase, the virus genome remains in body fluids and tissues. It may be possible that body fluids such as respiratory excretions become a source of infection to others; thus, careful infection control management is needed

    Virulence assessment of six major pathogenic Candida species in the mouse model of invasive candidiasis caused by fungal translocation

    Get PDF
    Gastrointestinal colonization has been considered as the primary source of candidaemia; however, few established mouse models are available that mimic this infection route. We therefore developed a reproducible mouse model of invasive candidiasis initiated by fungal translocation and compared the virulence of six major pathogenic Candida species. The mice were fed a low-protein diet and then inoculated intragastrically with Candida cells. Oral antibiotics and cyclophosphamide were then administered to facilitate colonization and subsequent dissemination of Candida cells. Mice infected with Candida albicans and Candida tropicalis exhibited higher mortality than mice infected with the other four species. Among the less virulent species, stool titres of Candida glabrata and Candida parapsilosis were higher than those of Candida krusei and Candida guilliermondii. The fungal burdens of C. parapsilosis and C. krusei in the livers and kidneys were significantly greater than those of C. guilliermondii. Histopathologically, C. albicans demonstrated the highest pathogenicity to invade into gut mucosa and liver tissues causing marked necrosis. Overall, this model allowed analysis of the virulence traits of Candida strains in individual mice including colonization in the gut, penetration into intestinal mucosa, invasion into blood vessels, and the subsequent dissemination leading to lethal infections

    Evaluation of Candida peritonitis with underlying peritoneal fibrosis and efficacy of micafungin in murine models of intra-abdominal candidiasis

    Get PDF
    Candida peritonitis is a crucial disease, however the optimal antifungal therapy regimen has not been clearly defined. Peritoneal fibrosis (PF)can be caused by abdominal surgery, intra-abdominal infection, and malignant diseases, and is also widely recognized as a crucial complication of long-term peritoneal dialysis. However, the influence of PF on Candida peritonitis prognosis remains unknown. Here, we evaluated the severity of Candida peritonitis within the context of PF and the efficacy of micafungin using mice. A PF mouse model was generated by intraperitoneally administering chlorhexidine gluconate. Candida peritonitis, induced by intraperitoneal inoculation of Candida albicans, was treated with a 7-day consecutive subcutaneous administration of micafungin. Candida infection caused a higher mortality rate in the PF mice compared with the control mice on day 7. Proliferative Candida invasion into the peritoneum and intra-abdominal organs was confirmed pathologically only in the PF mice. However, all mice in both groups treated with micafungin survived until day 20. Micafungin treatment tends to suppress inflammatory cytokines in the plasma 12 h after infection in both groups. Our results suggest that PF enhances early mortality in Candida peritonitis. Prompt initiation and sufficient doses of micafungin had good efficacy for Candida peritonitis, irrespective of the underlying PF
    corecore