12 research outputs found

    Clinical and radiological outcome of anterior-posterior fusion versus transforaminal lumbar interbody fusion for symptomatic disc degeneration: a retrospective comparative study of 133 patients

    Get PDF
    Abundant data are available for direct anterior/posterior spine fusion (APF) and some for transforaminal lumbar interbody fusion (TLIF), but only few studies from one institution compares the two techniques. One-hundred and thirty-three patients were retrospectively analyzed, 68 having APF and 65 having TLIF. All patients had symptomatic disc degeneration of the lumbar spine. Only those with one or two-level surgeries were included. Clinical chart and radiologic reviews were done, fusion solidity assessed, and functional outcomes determined by pre- and postoperative SF-36 and postoperative Oswestry Disability Index (ODI), and a satisfaction questionnaire. The minimum follow-up was 24 months. The mean operating room time and hospital length of stay were less in the TLIF group. The blood loss was slightly less in the TLIF group (409 vs. 480 cc.). Intra-operative complications were higher in the APF group, mostly due to vein lacerations in the anterior retroperitoneal approach. Postoperative complications were higher in the TLIF group due to graft material extruding against the nerve root or wound drainage. The pseudarthrosis rate was statistically equal (APF 17.6% and TLIF 23.1%) and was higher than most published reports. Significant improvements were noted in both groups for the SF-36 questionnaires. The mean ODI scores at follow-up were 33.5 for the APF and 39.5 for the TLIF group. The patient satisfaction rate was equal for the two group

    Diffusion MRI quality control and functional diffusion map results in ACRIN 6677/RTOG 0625: A multicenter, randomized, phase II trial of bevacizumab and chemotherapy in recurrent glioblastoma

    Get PDF
    Functional diffusion mapping (fDM) is a cancer imaging technique that quantifies voxelwise changes in apparent diffusion coefficient (ADC). Previous studies have shown value of fDMs in bevacizumab therapy for recurrent glioblastoma multiforme (GBM). The aim of the present study was to implement explicit criteria for diffusion MRI quality control and independently evaluate fDM performance in a multicenter clinical trial (RTOG 0625/ACRIN 6677). A total of 123 patients were enrolled in the current multicenter trial and signed institutional review board-approved informed consent at their respective institutions. MRI was acquired prior to and 8 weeks following therapy. A 5-point QC scoring system was used to evaluate DWI quality. fDM performance was evaluated according to the correlation of these metrics with PFS and OS at the first follow-up time-point. Results showed ADC variability of 7.3% in NAWM and 10.5% in CSF. A total of 68% of patients had usable DWI data and 47% of patients had high quality DWI data when also excluding patients that progressed before the first follow-up. fDM performance was improved by using only the highest quality DWI. High pre-treatment contrast enhancing tumor volume was associated with shorter PFS and OS. A high volume fraction of increasing ADC after therapy was associated with shorter PFS, while a high volume fraction of decreasing ADC was associated with shorter OS. In summary, DWI in multicenter trials are currently of limited value due to image quality. Improvements in consistency of image quality in multicenter trials are necessary for further advancement of DWI biomarkers

    MRI for in vivo Analysis of Ablation Zones Formed by Cooled Radiofrequency Neurotomy to Treat Chronic Joint Pain Across Multiple Axial Spine Sites

    No full text
    Purpose: Radiofrequency (RF) ablation is the targeted damage of neural tissues to disrupt pain transmission in sensory nerves using thermal energy generated in situ by an RF probe. The present study aims to evaluate the utility of magnetic resonance imaging (MRI) for in vivo quantitative assessment of ablation zones in human subjects following cooled radiofrequency neurotomy for chronic pain at spinal facet or sacroiliac joints. Ablation zone size and shape have been shown in animal models to be influenced by size and type of RF probe - with cooled RF probes typically forming larger, more spherical ablation zones. To date, MRI of RF ablation zones in humans has been limited to two single retrospective case reports. Patients and Methods: A prospective, open-label pilot study of MRI for evaluation of cooled radiofrequency ablation zones following standard of care procedures in adult outpatients was conducted. Adult subjects (n=13) received monopolar cooled RF (CRF) ablation (COOLIEF™, Avanos Medical) of sensory nerves at spinal facet or sacroiliac joints, followed by an MRI 2-7 days after the procedure. MRI data were acquired using both Short Tau Inversion Recovery (STIR) and contrast-enhanced T1-weighted (T1C) protocols. T1C MRI was used to calculate 3-dimensional ellipsoid ablation zone volumes (V), where well-defined regions of signal hyperintensity were used to identify three orthogonal diameters (T, D, L) and apply the formula V=π/6×T×D×L. Results: Among 13 patients, 96 CRF ablation zones were created at 4 different anatomic sites (sacroiliac, lumbar, thoracic and cervical). CRF ablation zone morphology varied by anatomical location and structural features of surrounding tissues. In some cases, proximity to bone and striations of surrounding musculature obscured ablation zone borders. The volumes of 75 of the 96 ablation zones were measurable from MRI, with values (mean±SD) ranging from 0.4679 (±0.29) cm to 2.735 (±2.62) cm for the cervical and thoracic sites, respectively. Conclusion: In vivo T1C MRI analysis of cooled RF ablation zones at spinal facet and sacroiliac joints demonstrated variable effects of local tissues on ablation zone morphology. Placement of the CRFA probe very close to bone alters the ablation zone in a negative way, causing non-spherical and incomplete lesioning. These new data may serve to inform practicing physicians about optimal cooled RF probe placement in clinical procedures

    Safe magnetic resonance imaging scanning of patients with cardiac rhythm devices: A role for computer modeling

    Get PDF
    BACKGROUND Although there are several hazards for patients with implanted pacemakers and defibrillators in the magnetic resonance imaging (MRI) environment, evaluation of lead electrode heating is the most complex because of the many influencing variables: patient size, anatomy, body composition, patient position in the bore, scan sequence (radiofrequency power revel), lead routing, and lead design. Although clinical studies are an important step in demonstrating efficacy, demonstrating safety through clinical trials alone is not practical because of this complexity. OBJECTIVE The purpose of this study was to develop a comprehensive modeling framework to predict the probability of pacing capture threshold (PCT) change due to lead electrode heating in the MRI environment and thus provide a robust safety evaluation. METHODS The read heating risk was assessed via PCT change because this parameter is the most clinically relevant measure of lead heating. The probability for PCT change was obtained by combining the prediction for power at the electrode tissue interface obtained via simulations with a prediction for PCT change as a function of radiofrequency power obtained via an in vivo RESULTS The human modeling framework predicted that the probability of a 0.5-V PCT change due to an MRI scan for the Medtronic CapSureFix MRI SureScan model 5086 MRI reads is <1/70,000 for chest scans and <1/10,000,000 for either head scans or lower torso scans. CONCLUSION The framework efficiently models millions of combinations, delivering a robust evaluation of the lead electrode heating hazard. This modeling approach provides a comprehensive safety evaluation that is impossible to achieve using phantom testing, animal studies, or clinical trials alone.11Nsciescopu
    corecore