22 research outputs found

    Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy

    Get PDF
    Esophageal cancer (EC) is a disease often marked by aggressive growth and poor prognosis. Lack of targeted therapies, resistance to chemoradiation therapy, and distant metastases among patients with advanced disease account for the high mortality rate. The tumor microenvironment (TME) contains several cell types, including fibroblasts, immune cells, adipocytes, stromal proteins, and growth factors, which play a significant role in supporting the growth and aggressive behavior of cancer cells. The complex and dynamic interactions of the secreted cytokines, chemokines, growth factors, and their receptors mediate chronic inflammation and immunosuppressive TME favoring tumor progression, metastasis, and decreased response to therapy. The molecular changes in the TME are used as biological markers for diagnosis, prognosis, and response to treatment in patients. This review highlighted the novel insights into the understanding and functional impact of deregulated cytokines and chemokines in imparting aggressive EC, stressing the nature and therapeutic consequences of the cytokine-chemokine network. We also discuss cytokine-chemokine oncogenic potential by contributing to the Epithelial-Mesenchymal Transition (EMT), angiogenesis, immunosuppression, metastatic niche, and therapeutic resistance development. In addition, it discusses the wide range of changes and intracellular signaling pathways that occur in the TME. Overall, this is a relatively unexplored field that could provide crucial insights into tumor immunology and encourage the effective application of modulatory cytokine-chemokine therapy to EC.This study was supported by a PI grant from Sidra Medicine (5071012001) to Mohammad Haris. Ajaz A. Bhat is supported by Sidra Medicine internal grant (5011041002) and Ramalinga swami (Grant number: D.O.NO.BT/HRD/35/02/2006) Fellowship to Muzafar A. Macha and Nissar A. Wani by Department of Biotechnology (DBT), Govt. of India, New Delhi. Shahab Uddin is supported by Medical Research Centre grants (grant# 16102/6, #16354/16)

    Assessment of the Performance of Osmotically Driven Polymeric Membrane Processes

    Get PDF
    The universal water scarceness and the extensive ordeals with energy cost in conjunction with the undesirable ecological effects have advanced the improvement of novel osmotically driven membrane processes. Membrane processes which are osmotically driven are developing type of membrane separation procedures that apply concentrated brines to separate liquid streams. They are adaptable in various applications; hence, allow them to be an attractive substitute for drug release, wastewater treatment and the production and recovery of energy. Although, internal concentration polarization (ICP) occurs in membrane practises which are osmotically driven as a consequence of hindered diffusion of solute in a porous stratum, their interest has even increased. Here we review two natural membrane processes that are osmotically driven; Forward osmosis (FO) and Pressure retarded osmosis (PRO). Thus, the major points are as follows: 1) it was highlighted in this review, that the major developments in FO process, important for the process efficiency is to choose a suitable membrane and draw solution. 2) The recent evaluation, understanding and optimizing the activities of fouling throughout the osmotic dilution of seawater employing FO was discussed. 3) Recent advancements of FO in the application of food processing was reviewed. 4) It was highlighted that the main concept of PRO for power generation is the energy of mixing that offers great assessment of the nonexpansion work which could be generated from mixing; nonetheless, the development of effective membranes with appropriate arrangement and performance is needed for the advancement of PRO process for power generation. 5) One major challenge of osmotically driven membrane processes, most recent developments and model development to predict their performances were discussed

    GIZA 11 AND GIZA 12; TWO NEW FLAX DUAL PURPOSE TYPE VARIETIES

    Get PDF
    Sixteen flax genotypes {13 promising lines and 3 check varieties viz., Giza 8 (oil type), Sakha 1 (dual purpose type) and Sakha 3 (fiber type)} were evaluated for straw, seed, oil yields and their related traits under twelve different environments; four locations (Sakha, Etay El-Baroud, Ismailia and Giza Exp. Stations through three successive seasons (2011/12, 2012/13 and 2013/14). These materials were evaluated in a randomized complete blocks design with three replications at the twelve above-mentioned environments. The analysis of variance revealed highly significant differences among genotypes (G), environments (E) and G x E interaction for all studied traits except straw weight per plant, indicating a wide range of variation among genotypes, environments and these genotypes exhibited differential response to environmental conditions. The significant variance due to residual for all characters except both straw weight per plant and oil yield per fad indicated that genotypes differed with respect to their stability suggesting that prediction would be difficult, which means that mean performance alone would not be appropriate. Interaction component of variance (σ2ge) was less than the genotypic variance (σ2g) for all characters, indicating that genotypes differ in their genetic potential for these traits. This was reflected in high heritability and low discrepancy between phenotypic (PCV) and genotypic (GCV) coefficients of variability values for these traits indicating the possibility of using each of long fiber percentage, plant height and technical stem length as selection indices for improving straw weight per plant, as well as, using 1000-seed weight and capsules number per plant as selection indices for improving seed weight per plant. Yield stability (YSi) statistic indicated that S.541-C/3 and S.541-D/10 gave high mean performance and stability for straw, fiber, seed and oil yields per fad in addition to oil percentage, capsules number per plant and 1000-seed weight. Therefore, the two genotypes well be released under the name Giza 11 and Giza 12, respectively. These newly released varieties are of dual purpose type for straw, fiber, seed and oil yield. They may replace the low yielding cultivars Giza 8, Sakha 1 and Sakha 3

    The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). INTERPRETATION: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden

    Aspects of staphylococcal growth, haemolysis and phagocytosis

    Get PDF
    The effects of medium composition on the growth, biochemical and biological activities of selected coagulase positive and negative Staphylococci have been investigated. The study concentrated on four major points, namely: nutrient requirements; haemolysin and enzyme production; their antigenic properties; and phagocytosis of the cells. The nutrient requirements for adequate growth of Staphylococci was investigated in a chemically defined medium (CDM) for each strain to determine the supplemental, required and essential amino acids. It was found that strain/species specific differences in amino acid requirements occur amongst the six Staphylococci. The growth of Staphylococcus epidermidis showed complete biotin-independence. Additionally, media derived from fish waste extract (FE) were prepared after developing a simple rapid method to digest the fish waste. FE was found a good substitute for beef extract in culture media. [Continues.

    Poly (acrylonitrile-co-methyl methacrylate) nanoparticles: I. Preparation and characterization

    Get PDF
    This work concerns the preparation and characterization of poly (acrylonitrile-co-methyl methacrylate) Copolymer, P(AN-co-MMA), nano-particles using precipitation polymerization technique. Potassium per-sulfate redox initiation system was used to perform polymerization process in an alcoholic aqueous system. The impact of different polymerization conditions such as comonomer concentration and ratio, polymerization time, polymerization temperatures, initiator concentration and co-solvent composition on the polymerization yield and particle size was studied. Maximum polymerization yield, 70%, was obtained with MMA:AN (90%:10%) comonomer composition. Particle sizes ranging from 16 nm to 1483 nm were obtained and controlled by variation of polymerization conditions. The co-polymerization process was approved by FT-IR and TGA analysis. The copolymer composition was investigated by nitrogen content analysis. Copolymers with a progressive percentage of PAN show thermal stabilities close to PAN Homopolymer. SEM photographs prove spherical structure of the produced copolymers. The investigated system shows promising future in the preparation of nanoparticles from comonomers without using emulsifiers or dispersive agents
    corecore