465 research outputs found
Climate change promotes parasitism in a coral symbiosis.
Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change
Enhanced flight performance by genetic manipulation of wing shape in Drosophila
Insect wing shapes are remarkably diverse and the combination of shape and kinematics determines both aerial capabilities and power requirements. However, the contribution of any specific morphological feature to performance is not known. Using targeted RNA interference to modify wing shape far beyond the natural variation found within the population of a single species, we show a direct effect on flight performance that can be explained by physical modelling of the novel wing geometry. Our data show that altering the expression of a single gene can significantly enhance aerial agility and that the Drosophila wing shape is not, therefore, optimized for certain flight performance characteristics that are known to be important. Our technique points in a new direction for experiments on the evolution of performance specialities in animals
Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits
The interaction of optical and mechanical modes in nanoscale optomechanical
systems has been widely studied for applications ranging from sensing to
quantum information science. Here, we develop a platform for cavity
optomechanical circuits in which localized and interacting 1550 nm photons and
2.4 GHz phonons are combined with photonic and phononic waveguides. Working in
GaAs facilitates manipulation of the localized mechanical mode either with a
radio frequency field through the piezo-electric effect, or optically through
the strong photoelastic effect. We use this to demonstrate a novel acoustic
wave interference effect, analogous to coherent population trapping in atomic
systems, in which the coherent mechanical motion induced by the electrical
drive can be completely cancelled out by the optically-driven motion. The
ability to manipulate cavity optomechanical systems with equal facility through
either photonic or phononic channels enables new device and system
architectures for signal transduction between the optical, electrical, and
mechanical domains
Moving Your Sons to Safety: Galls Containing Male Fig Wasps Expand into the Centre of Figs, Away From Enemies
Figs are the inflorescences of fig trees (Ficus spp., Moraceae). They are shaped like a hollow ball, lined on their inner surface by numerous tiny female flowers. Pollination is carried out by host-specific fig wasps (Agaonidae). Female pollinators enter the figs through a narrow entrance gate and once inside can walk around on a platform generated by the stigmas of the flowers. They lay their eggs into the ovules, via the stigmas and styles, and also gall the flowers, causing the ovules to expand and their pedicels to elongate. A single pollinator larva develops in each galled ovule. Numerous species of non-pollinating fig wasps (NPFW, belonging to other families of Chalcidoidea) also make use of galled ovules in the figs. Some initiate galls, others make use of pollinator-generated galls, killing pollinator larvae. Most NPFW oviposit from the outside of figs, making peripherally-located pollinator larvae more prone to attack. Style length variation is high among monoecious Ficus spp. and pollinators mainly oviposit into more centrally-located ovules, with shorter styles. Style length variation is lower in male (wasp-producing) figs of dioecious Ficus spp., making ovules equally vulnerable to attack by NPFW at the time that pollinators oviposit
Retrivability in The Danish National Hospital Registry of HIV and hepatitis B and C coinfection diagnoses of patients managed in HIV centers 1995–2004
<p>Abstract</p> <p>Background</p> <p>Hospital-based discharge registries are used increasingly for longitudinal epidemiological studies of HIV. We examined completeness of registration of HIV infections and of chronic hepatitis B (HBV) and hepatitis C (HCV) coinfections in the Danish National Hospital Registry (DNHR) covering all Danish hospitals.</p> <p>Methods</p> <p>The Danish HIV Cohort Study (DHCS) encompasses all HIV-infected patients treated in Danish HIV clinics since 1 January 1995. All 2,033 Danish patients in DHCS diagnosed with HIV-1 during the 10-year period from 1 January 1995 to 31 December 2004 were included in the current analysis. We used the DHCS as a reference to examine the completeness of HIV and of HBV and HCV coinfections recorded in DNHR. Cox regression analysis was used to estimate hazard ratios of time to diagnosis of HIV in DNHR compared to DHCS.</p> <p>Results</p> <p>Of the 2,033 HIV patients in DHCS, a total of 2,006 (99%) were registered with HIV in DNHR. Of these, 1,888 (93%) were registered in DNHR within one year of their first positive HIV test. A CD4 < 200 cells/μl, a viral load >= 100,000 copies/ml and being diagnosed after 1 January 2000, were associated with earlier registration in DNHR, both in crude and adjusted analyses. Thirty (23%) HIV patients registered with chronic HBV (n = 129) in DHCS and 126 (48%) of HIV patients with HCV (n = 264) in DHCS were registered with these diagnoses in the DNHR. Further 17 and 8 patients were registered with HBV and HCV respectively in DNHR, but not in DHCS. The positive predictive values of being registered with HBV and HCV in DHCS were thereby estimated to 0.88 and 0.97 and in DNHR to 0.32 and 0.54.</p> <p>Conclusion</p> <p>The study demonstrates that secondary data from national hospital databases may be reliable for identification of patients diagnosed with HIV infection. However, the predictive value of co-morbidity data may be low.</p
Aerodynamics of the Hovering Hummingbird
Despite profound musculoskeletal differences, hummingbirds (Trochilidae) are widely thought to employ aerodynamic mechanisms similar to those used by insects. The kinematic symmetry of the hummingbird upstroke and downstroke has led to the assumption that these halves of the wingbeat cycle contribute equally to weight support during hovering, as exhibited by insects of similar size. This assumption has been applied, either explicitly or implicitly, in widely used aerodynamic models, and in a variety of empirical tests. Here we provide measurements of the wake of hovering rufous hummingbirds (Selasphorus rufus) obtained with digital particle image velocimetry that show force asymmetry: hummingbirds produce 75% of their weight support during the downstroke and only 25% during the upstroke. Some of this asymmetry is probably due to inversion of their cambered wings during upstroke. The wake of hummingbird wings also reveals evidence of leading-edge vortices created during the downstroke, indicating that they may operate at Reynolds numbers sufficiently low to exploit a key mechanism typical of insect hovering. Hummingbird hovering approaches that of insects, yet remains distinct because of effects resulting from an inherently dissimilar—avian—body plan
Eta Carinae and the Luminous Blue Variables
We evaluate the place of Eta Carinae amongst the class of luminous blue
variables (LBVs) and show that the LBV phenomenon is not restricted to
extremely luminous objects like Eta Car, but extends luminosities as low as
log(L/Lsun) = 5.4 - corresponding to initial masses ~25 Msun, and final masses
as low as ~10-15 Msun. We present a census of S Doradus variability, and
discuss basic LBV properties, their mass-loss behaviour, and whether at maximum
light they form pseudo-photospheres. We argue that those objects that exhibit
giant Eta Car-type eruptions are most likely related to the more common type of
S Doradus variability. Alternative atmospheric models as well as
sub-photospheric models for the instability are presented, but the true nature
of the LBV phenomenon remains as yet elusive. We end with a discussion on the
evolutionary status of LBVs - highlighting recent indications that some LBVs
may be in a direct pre-supernova state, in contradiction to the standard
paradigm for massive star evolution.Comment: 27 pages, 6 figures, Review Chapter in "Eta Carinae and the supernova
imposters" (eds R. Humphreys and K. Davidson) new version submitted to
Springe
Survival advantages conferred to colon cancer cells by E-selectin-induced activation of the PI3K-NFκB survival axis downstream of Death receptor-3
International audienceABSTRACT: BACKGROUND: Extravasation of circulating cancer cells is a key event of metastatic dissemination that is initiated by the adhesion of cancer cells to endothelial cells. It requires interactions between adhesion receptors on endothelial cells and their counter-receptors on cancer cells. Notably, E-selectin, a major endothelial adhesion receptor, interacts with Death receptor-3 present on metastatic colon carcinoma cells. This interaction confers metastatic properties to colon cancer cells by promoting the adhesion of cancer cells to endothelial cells and triggering the activation of the pro-migratory p38 and pro-survival ERK pathways in the cancer cells. In the present study, we investigated further the mechanisms by which the E-selectin-activated pathways downstream of DR3 confer a survival advantage to colon cancer cells. METHODS: Cell survival has been ascertained by using the WST-1 assay and by evaluating the activation of the PI3 kinase/NFκB survival axis. Apoptosis has been assayed by determining DNA fragmentation by Hoechst staining and by measuring cleavage of caspases-8 and -3. DR3 isoforms have been identified by PCR. For more precise quantification, targeted PCR reactions were carried out, and the amplified products were analyzed by automated chip-based microcapillary electrophoresis on an Agilent 2100 Bioanalyzer instrument. RESULTS: Interaction between DR3-expressing HT29 colon carcinoma cells and E-selectin induces the activation of the PI3K/Akt pathway. Moreover, p65/RelA, the anti-apoptotic subunit of NFκB, is rapidly translocated to the nucleus in response to E-selectin. This translocation is impaired by the PI3K inhibitor LY294002. Furthermore, inhibition of the PI3K/Akt pathway increases the cleavage of caspase 8 in colon cancer cells treated with E-selectin and this effect is still further increased when both ERK and PI3K pathways are concomitantly inhibited. Intriguingly, metastatic colon cancer cell lines such as HT29 and SW620 express higher levels of a splice variant of DR3 that has no trans-membrane domain and no death domain. CONCLUSION: Colon cancer cells acquire an increased capacity to survive via the activation of the PI3K/NFκB pathway following the stimulation of DR3 by E-selectin. Generation of a DR3 splice variant devoid of death domain can further contribute to protect against apoptosis
A prospective, randomised, controlled, double-blind phase I-II clinical trial on the safety of A-Part® Gel as adhesion prophylaxis after major abdominal surgery versus non-treated group
<p>Abstract</p> <p>Background</p> <p>Postoperative adhesions occur when fibrous strands of internal scar tissue bind anatomical structures to one another. The most common cause of intra-abdominal adhesions is previous intra-abdominal surgical intervention. Up to 74% of intestinal obstructions are caused by post surgical adhesions. Although a variety of methods and agents have been investigated to prevent post surgical adhesions, the problem of peritoneal adhesions remains largely unsolved. Materials serving as an adhesion barrier are much needed.</p> <p>Methods/Design</p> <p>This is a prospective, randomised, controlled, patient blinded and observer blinded, single centre phase I-II trial, which evaluates the safety of A-Part<sup>® </sup>Gel as an adhesion prophylaxis after major abdominal wall surgery, in comparison to an untreated control group. 60 patients undergoing an elective median laparotomy without prior abdominal surgery are randomly allocated into two groups of a 1:1- ratio. Safety parameter and primary endpoint of the study is the occurrence of wound healing impairment or peritonitis within 28 (+10) days after surgery. The frequency of anastomotic leakage within 28 days after operation, occurrence of adverse and serious adverse events during hospital stay up to 3 months and the rate of adhesions along the scar within 3 months are defined as secondary endpoints. After hospital discharge the investigator will examine the enrolled patients at 28 (+10) days and 3 months (±14 days) after surgery.</p> <p>Discussion</p> <p>This trial aims to assess, whether the intra-peritoneal application of A-Part<sup>® </sup>Gel is safe and efficacious in the prevention of post-surgical adhesions after median laparotomy, in comparison to untreated controls.</p> <p>Trial registration</p> <p>NCT00646412</p
- …