31 research outputs found

    Photonic Analogue of Two-dimensional Topological Insulators and Helical One-Way Edge Transport in Bi-Anisotropic Metamaterials

    Full text link
    Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal invariant topological insulators. Because of limitations imposed by nature, topologically non-trivial electronic order seems to be uncommon except in small-band-gap semiconductors with strong spin-orbit interactions. In this Article we show that artificial electromagnetic structures, known as metamaterials, provide an attractive platform for designing photonic analogues of topological insulators. We demonstrate that a judicious choice of the metamaterial parameters can create photonic phases that support a pair of helical edge states, and that these edge states enable one-way photonic transport that is robust against disorder.Comment: 13 pages, 3 figure

    Wide-band negative permeability of nonlinear metamaterials

    Get PDF
    We propose a novel way to achieve an exceptionally wide frequency range where metamaterial possesses negative effective permeability. This can be achieved by employing a nonlinear response of metamaterials. We demonstrate that, with an appropriate design, a frequency band exceeding 100% is available for a range of signal amplitudes. Our proposal provides a significant improvement over the linear approach, opening a road towards broadband negative refraction and its applications

    Broadband polygonal invisibility cloak for visible light

    Get PDF
    Invisibility cloaks have recently become a topic of considerable interest thanks to the theoretical works of transformation optics and conformal mapping. The design of the cloak involves extreme values of material properties and spatially dependent parameter tensors, which are very difficult to implement. The realization of an isolated invisibility cloak in the visible light, which is an important step towards achieving a fully movable invisibility cloak, has remained elusive. Here, we report the design and experimental demonstration of an isolated polygonal cloak for visible light. The cloak is made of several elements, whose electromagnetic parameters are designed by a linear homogeneous transformation method. Theoretical analysis shows the proposed cloak can be rendered invisible to the rays incident from all the directions. Using natural anisotropic materials, a simplified hexagonal cloak which works for six incident directions is fabricated for experimental demonstration. The performance is validated in a broadband visible spectrum

    Metamaterials Congress series: Origins and history

    No full text
    This abstract is a short review of the history of the Metamaterials Congress Series, written on the occasion of its tenth anniversary

    TE Surface Wave Resonances on High-Impedance Surface Based Antennas: Analysis and Modeling

    No full text
    Low-profile antennas comprising a horizontal dipole above a high-impedance surface are analyzed. The emphasis of this paper is on the additional resonances of the radiating structure caused by surface waves propagating on the high-impedance surface. It is shown that such resonances can be favorably used for broadening the bandwidth of the antenna. The phenomenon is thoroughly modeled by exploiting a parallel between the HIS structure and a waveguide resonator. In the second part of the paper we discuss homogenized approaches for modeling the radiating properties of the antenna with emphasis to the phenomenon discussed in the first part. As it turns out, it is necessary to take into account the spatially dispersive properties of high-impedance surfaces, and most of the simplified models commonly used for analyzing high-impedance surface based antennas fail in predicting the discussed resonance mode

    An antenna model for the Purcell effect

    Full text link
    The Purcell effect is defined as a modification of the spontaneous emission rate of a quantum emitter at the presence of a resonant cavity. However, a change of the emission rate of an emitter caused by an environment has a classical counterpart. Any small antenna tuned to a resonance can be described as an oscillator with radiative losses, and the effect of the environment on its radiation can be modeled and measured in terms of the antenna radiation resistance, similar to a quantum emitter. We exploit this analogue behavior to develop a general approach for calculating the Purcell factors of different systems and various frequency ranges including both electric and magnetic Purcell factors. Our approach is illustrated by a general equivalent scheme, and it allows resenting the Purcell factor through the continuous radiation of a small antenna at the presence of an electromagnetic environment
    corecore