86 research outputs found

    Identification of the Rostral Migratory Stream in the Canine and Feline Brain

    Get PDF
    In the adult rodent brain, neural progenitor cells migrate from the subventricular zone of the lateral ventricle towards the olfactory bulb in a track known as the rostral migratory stream (RMS). To facilitate the study of neural progenitor cells and stem cell therapy in large animal models of CNS disease, we now report the location and characteristics of the normal canine and feline RMS. The RMS was found in Nissl-stained sagittal sections of adult canine and feline brains as a prominent, dense, continuous cellular track beginning at the base of the anterior horn of the lateral ventricle, curving around the head of the caudate nucleus and continuing laterally and ventrally to the olfactory peduncle before entering the olfactory tract and bulb. To determine if cells in the RMS were proliferating, the thymidine analog 5-bromo-2-deoxyuridine (BrdU) was administered and detected by immunostaining. BrdU-immunoreactive cells were present throughout this track. The RMS was also immunoreactive for markers of proliferating cells, progenitor cells and immature neurons (Ki-67 and doublecortin), but not for NeuN, a marker of mature neurons. Luxol fast blue and CNPase staining indicated that myelin is closely apposed to the RMS along much of its length and may provide guidance cues for the migrating cells. Identification and characterization of the RMS in canine and feline brain will facilitate studies of neural progenitor cell biology and migration in large animal models of neurologic disease

    Principles of Glomerular Organization in the Human Olfactory Bulb – Implications for Odor Processing

    Get PDF
    Olfactory sensory neurons (OSN) in mice express only 1 of a possible 1,100 odor receptors (OR) and axons from OSNs expressing the same odor receptor converge into ∼2 of the 1,800 glomeruli in each olfactory bulb (OB) in mice; this yields a convergence ratio that approximates 2∶1, 2 glomeruli/OR. Because humans express only 350 intact ORs, we examined human OBs to determine if the glomerular convergence ratio of 2∶1 established in mice was applicable to humans. Unexpectedly, the average number of human OB glomeruli is >5,500 yielding a convergence ratio of ∼16∶1. The data suggest that the initial coding of odor information in the human OB may differ from the models developed for rodents and that recruitment of additional glomeruli for subpopulations of ORs may contribute to more robust odor representation

    Radiogenomic Mapping of Edema/Cellular Invasion MRI-Phenotypes in Glioblastoma Multiforme

    Get PDF
    Despite recent discoveries of new molecular targets and pathways, the search for an effective therapy for Glioblastoma Multiforme (GBM) continues. A newly emerged field, radiogenomics, links gene expression profiles with MRI phenotypes. MRI-FLAIR is a noninvasive diagnostic modality and was previously found to correlate with cellular invasion in GBM. Thus, our radiogenomic screen has the potential to reveal novel molecular determinants of invasion. Here, we present the first comprehensive radiogenomic analysis using quantitative MRI volumetrics and large-scale gene- and microRNA expression profiling in GBM.Based on The Cancer Genome Atlas (TCGA), discovery and validation sets with gene, microRNA, and quantitative MR-imaging data were created. Top concordant genes and microRNAs correlated with high FLAIR volumes from both sets were further characterized by Kaplan Meier survival statistics, microRNA-gene correlation analyses, and GBM molecular subtype-specific distribution.The top upregulated gene in both the discovery (4 fold) and validation (11 fold) sets was PERIOSTIN (POSTN). The top downregulated microRNA in both sets was miR-219, which is predicted to bind to POSTN. Kaplan Meier analysis demonstrated that above median expression of POSTN resulted in significantly decreased survival and shorter time to disease progression (P<0.001). High POSTN and low miR-219 expression were significantly associated with the mesenchymal GBM subtype (P<0.0001).Here, we propose a novel diagnostic method to screen for molecular cancer subtypes and genomic correlates of cellular invasion. Our findings also have potential therapeutic significance since successful molecular inhibition of invasion will improve therapy and patient survival in GBM

    Cognition and resective surgery for diffuse infiltrative glioma: an overview

    Get PDF
    Compared to classical oncological outcome measures such as time to progression and survival, the importance of cognitive functioning in patients with diffuse infiltrative brain tumors has only recently been recognized. Apart from the relatively low incidence and the invariably fatal outcome of gliomas, the general assumption that cognitive assessment is time-consuming and burdensome contributes to this notion. Our understanding of the effects of brain surgery on cognition, for instance, is largely based on studies in surgical patients with refractory epilepsy, with only a limited number of studies in surgical patients with gliomas. The impact of other factors affecting cognition in glioma patients such as direct tumor effects, radiotherapy and chemotherapy, and medical treatment, including anti-epileptic drugs and steroids, have been studied more extensively. The purpose of this paper is to provide an overview of cognition in patients with diffuse infiltrative gliomas and the impact of resective surgery as well as other tumor and treatment-related factors

    Eosinophils in glioblastoma biology

    Get PDF
    Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The development of this malignant glial lesion involves a multi-faceted process that results in a loss of genetic or epigenetic gene control, un-regulated cell growth, and immune tolerance. Of interest, atopic diseases are characterized by a lack of immune tolerance and are inversely associated with glioma risk. One cell type that is an established effector cell in the pathobiology of atopic disease is the eosinophil. In response to various stimuli, the eosinophil is able to produce cytotoxic granules, neuromediators, and pro-inflammatory cytokines as well as pro-fibrotic and angiogenic factors involved in pathogen clearance and tissue remodeling and repair. These various biological properties reveal that the eosinophil is a key immunoregulatory cell capable of influencing the activity of both innate and adaptive immune responses. Of central importance to this report is the observation that eosinophil migration to the brain occurs in response to traumatic brain injury and following certain immunotherapeutic treatments for GBM. Although eosinophils have been identified in various central nervous system pathologies, and are known to operate in wound/repair and tumorstatic models, the potential roles of eosinophils in GBM development and the tumor immunological response are only beginning to be recognized and are therefore the subject of the present review

    Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs

    Full text link
    corecore