59 research outputs found

    A Method for the Analytical Extraction of the Single-Diode PV Model Parameters

    Get PDF
    Determination of PV model parameters usually requires time consuming iterative procedures, prone to initialization and convergence difficulties. In this paper, a set of analytical expressions is introduced to determine the five parameters of the single-diode model for crystalline PV modules at any operating conditions, in a simple and straightforward manner. The derivation of these equations is based on a newly found relation between the diode ideality factor and the open circuit voltage, which is explicitly formulated using the temperature coefficients. The proposed extraction method is robust, cost-efficient, and easy-to-implement, as it relies only on datasheet information, while it is based on a solid theoretical background. Its accuracy and computational efficiency is verified and compared to other methods available in the literature through both simulation and outdoor measurements

    An Explicit PV String Model Based on the Lambert W Function and Simplified MPP Expressions for Operation Under Partial Shading

    Get PDF
    In this paper, a reformulation of the widely used one-diode model of the photovoltaic (PV) cell is introduced, employing the Lambert W function. This leads to an efficient PV string model, where the terminal voltage is expressed as an explicit function of the current, resulting in significantly reduced calculation times and improved robustness of simulation. The model is experimentally validated and then used for studying the operation of PV strings under partial shading conditions. Various shading patterns are investigated to outline the effect on the string I-V and P-V characteristics. Simplified formulae are then derived to calculate the maximum power points of a PV string operating under any number of irradiance levels, without resorting to detailed modeling and simulation. Both the explicit model and the simplified expressions are intended for application in shading loss and energy yield calculations

    Predictors of early recurrence after resection of colorectal liver metastases

    Get PDF
    BACKGROUND: Early recurrence after resection of colorectal liver metastases (CLM) is common. Patients at risk of early recurrence may be candidates for enhanced preoperative staging and/or earlier postoperative imaging. The aim of this study was to determine if there are any risk factors that specifically predict early liver-only and systemic recurrence. METHODS: Retrospective analysis of prospective database of patients undergoing liver resection (LR) for CLM from 2004 to 2006 was undertaken. Early recurrence was defined as occurring within 18 months of LR. Patients were classified into three groups: early liver-only recurrence, early systemic recurrence and recurrence-free. Preoperative factors were compared between patients with and without early recurrence. RESULTS: Two hundred and forty-three consecutive patients underwent LR for CLM. Twenty-seven patients (11%) developed early liver-only recurrence. Dukes C stage and male sex were significantly associated with early liver-only recurrence (P < 0.05). Sixty-six patients (27%) developed early systemic recurrence. Tumour size ≥3.6 cm and tumour number (>2) were significantly associated with early systemic recurrence (P < 0.001). CONCLUSIONS: It is possible to stratify patients according to the risk of early liver-only or systemic recurrence after resection of CLM. High-risk patients may be candidates for preoperative MRI and/or computed tomography-positron emission tomography (CT-PET) scan and should receive intensive postoperative surveillance

    Evaluation of the voltage change factor kU for DG equipped with synchronous generators

    No full text

    Operating policy and optimal sizing of a high penetration RES-BESS system for small isolated grids

    No full text
    • …
    corecore