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Abstract

Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant
economic consequences that they can generate on sensible loads. However, SGs include several distributed energy
resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ
levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the
forecasted reduction in investment costs and other economic incentives. These systems can introduce significant
time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used.
This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with
dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some
parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)),
and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.
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1 Introduction
Currently, significant modifications are taking place in
distribution systems as they move toward the future use
of smart grids (SGs). The main objectives of SGs are the
efficient use of energy, the reduction of losses in the sys-
tem, improvement in the power quality (PQ), and to en-
courage the use of distributed generation, in particular
renewable energy sources [1-4]. In this context, the in-
creasing use of controllable and non-linear loads and the
new needs of liberalized markets impose new PQ re-
quirements in order to avoid dangerous effects [5-7].
Among the disturbances mentioned above, the distor-

tions of the voltage and current waveforms are of great
interest, and they have been discussed extensively in the
literature. Both types of distortions are due mainly to
the extensive use of electronic power converters to sup-
ply loads and to connect dispersed generation (DG)
units or electrical storage systems to the grid.
Photovoltaic systems (PVSs) and wind turbine systems

(WTSs) are the fastest growing systems for meeting the
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requirements of dispersed generation. Their growth is
due to the expected cost reduction and to active govern-
ment policies in many countries that have encouraged
their use in power grids in the last few decades. These
DG units can be interfaced to the grid through either
partially rated power converters or full-scale power elec-
tronic devices that can inject harmonic currents that
cause voltage distortions [6-8]. Therefore, there is a
pressing need to study the impacts of such DG systems
on waveform distortions in distribution networks [9].
Thus, the main objective of this paper is to apply some
of the advanced methods for the assessment of the wave-
form distortions that are caused by different configura-
tions of PVSs and WTSs [10-20].
PVSs and WTSs generate distorted, time-varying wave-

forms. As a result, great attention is required to evaluate
the PQ indices to acquire information that must be de-
duced from the analyses of the spectral components of the
waveforms and their locations as a function of time [5,21].
The International Electrotechnical Committee's (IEC)

standard recommendations for signal processing use the
Discrete Fourier Transform (DFT) over successive, rect-
angular time windows with the time duration set to 10
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or 12 cycles of the fundamental period for 50-Hz sys-
tems or 60-Hz systems, respectively, to evaluate the
spectral components [22,23]. However, even though the
standard method can provide a global quantification of
the waveform distortion, it has limited ability to obtain
more detailed information in the analysis of a single
spectral component. This is due to some well-known
problems that characterize the DFT, i.e., the spectral
leakage that arises when the duration of the time win-
dow is not correctly synchronized with the fundamental
period of the power system [5].
Many solutions have been proposed in the relevant lit-

erature to overcome the spectral leakage problems by
using DFT-based methods or parametric methods, such
as Prony and Estimation of Signal Parameters by Rota-
tional Invariance Technique (ESPRIT) [24-30]. In particu-
lar, in [27,28], the Sliding-Window Prony method and the
Sliding-Window ESPRIT method were used to provide an
accurate estimation of both the harmonic and interhar-
monic components with high-frequency resolution, but
the computational burden was excessive. Other authors
have proposed hybrid methods that include DFT and
parametric methods to analyze the different frequency
bands of a signal separately to reduce the computational
burden and provide acceptable accuracy [29,30].
Recently, some authors [31,32] proposed two new,

modified sliding-window parametric methods based on
modifications of the Prony and ESPRIT signal models. In
fact, these methods are based on the observation of the
reduced time variability of the frequencies of the spectral
components. Then, the frequency values of the spectral
components were assumed to be constant over time,
thereby reducing the number of unknown parameters of
the signal model and the dimension of related equation
systems to be solved.
The main aims of this paper can be summarized as

follows:

– To provide a depth application of some methods for
the assessment of waveform distortion caused by
PVS and WTS generators. In particular, the DFT
method, parametric methods (Prony and ESPRIT),
hybrid methods, and modified sliding-window
parametric methods are presented and critically
compared on the basis of the accuracy of the results
they produce and their computational burdens,
taking into account both test and measured
waveforms.

– To explore and compare the theoretical waveform
distortions introduced by PVS and WTS
generators and the distortions detected by the
considered methods in some current waveforms
measured at the point of common coupling of
PVS and WTS.
The paper is organized as follows. Section 1.1 de-
scribes waveform distortions in detail that result from
the different configurations of the PVS and the WTS
schemes. In Section 1.2, the Sliding-Window ESPRIT
and Prony methods are exposed, and in Section 1.3, de-
tailed descriptions of the sliding-window hybrid methods
and the sliding-window modified parametric methods
are presented. In Section 1.4, we describe several case
studies that were based on synthetic and measured
waveforms of PVSs and WTSs. This article’s conclusions
are given in Section 2, and the DFT method is discussed
in Appendix A.
1.1 Waveform distortion in PV systems and WT systems
It is well known that solar energy and wind energy cur-
rently are the most diffuse sources of renewable energy.
The following sub-sections provide an overview of the
waveform distortions caused by the most common PVS
and WTS configurations. The overview deals with the
primary spectral emissions that result from disturbances
introduced by the specific nature of the system that is
being considered, and it also deals with the secondary
spectral emissions that are due to disturbances caused
by other sources near the system, such as non-linear
loads and power communication signals [18]. Note that
the distortions introduced by the PVSs and WTSs gener-
ally correspond to spectral components that are included
in a wide range of frequencies.
For the sake of clarity, in the following, the spectral

components up to 2 kHz are referred as ‘low-frequency
components’, and the spectral components over 2 kHz
are referred as ‘high-frequency components’.
1.1.1 Photovoltaic systems
Photovoltaic panels are connected to the grid through
an inverter that converts DC to AC and ensures that
particular specifications for voltage and frequency are
met and that other important tasks are performed, such
as maximum power point tracking (MPPT) [10].
Three-phase or single-phase inverters are used, with

the former ensuring no zero-sequence emission in the
spectra of the waveforms. Multi-string inverters also are
available to obtain the combined benefit of the previous
configurations [19].
Figure 1 shows the most diffuse topology solutions for

the inverters, i.e., (i) inverters with line frequency isolation
transformers (Figure 1a), (ii) inverters with high-frequency
isolation transformers (Figure 1b), and (iii) inverters with-
out isolation transformers (Figure 1c) [10,19].
Note that the different topologies and operating condi-

tions of plants produce different waveform distortions.
However, in general, it has been observed that every
PVS has a low level of distorting spectral components



Figure 1 Schemes of single-phase PVSs. (a) Inverter with line-frequency isolation transformer; (b) inverter with high-frequency isolation transformer;
(c) inverter without an isolation transformer.
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that increases slightly as the amount of power being pro-
duced increases.
Practical experience has indicated that PVSs consti-

tuted by multiple inverters produce lower levels of emis-
sions than PVSs that have a unique, large-size inverter
[20]. The spectral emissions of PVSs at the point of
common coupling (PCC) determine both the low- and
high-frequency spectral components.
The low-frequency emissions can be due to both back-

ground distortion and over-modulation by the inverter.
The amplitudes of these low-frequency spectral compo-
nents in a single photovoltaic plant are generally charac-
terized by a current total harmonic distortion (THDi)
smaller than 10%, but in resonance conditions, signifi-
cant voltage distortions and problems for the electric
network have been documented [19].
The high-frequency emissions basically are due to the

PVS inverter and they are specifically due to the pulse-
width modulation (PWM) technique that is used. These
emissions are always present during the power produc-
tion of the system, and they are null when the inverter is
turned off; moreover, for the current waveform of a sin-
gle photovoltaic plant in ideal operating conditions, the
amplitudes of these high-frequency spectral components
are higher than those of the low-frequency spectral com-
ponents [18,19]. These spectral components depend on
the type of inverter and on its switching frequency, and
they are mostly harmonics that appear as sidebands that
are centered around integer multiples of the switching
frequency [19,33]. Since the switching frequency is gen-
erally in a range between 10 and 20 kHz, actually, there
still are no adequate and consolidated standards for
these high-frequency emissions. Currently, however, the
increasing number of spectral components above 2 kHz
has resulted in an increased intensity of research activ-
ities on this issue [19]. Note that, also at high-frequency,
there are often spectral components due to the back-
ground voltage, which could become relevant for the
series resonance effect.

1.1.2 Wind turbine systems
At the current time, the main large wind turbine
schemes are (i) the fixed-speed wind turbine system, (ii)
the doubly fed induction generator (DFIG), and (iii) the
full-converter wind turbine generator [17,34,35]. Figure 2
shows the block schemes of the three configurations.
Figure 2a shows a fixed-speed wind turbine system in

which a squirrel-cage induction generator (SCIG) works
in a speed-limited range above the synchronous speed.
An electronic soft starter generally is provided to avoid
the increase of current during the start-up phase. Also, a
bank of capacitors is used to compensate for the reactive
power.
The spectral emissions of this scheme primarily are

caused by the action of the soft starter, which introduces
odd harmonic components at low frequency. Triple



Figure 2 Scheme of the most-diffuse WTSs. (a) Fixed-speed wind
turbine; (b) DFIG; (c) full-converter wind turbine generator.
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components are usually due to voltage unbalances. Gen-
erally, for this configuration, the most significant com-
ponents detected at the PCC are the 3rd, 5th, 7th, 9th,
11th, and 13th harmonic orders [17].
In a DFIG, the windings of the stator are connected

directly to the grid, whereas, on the rotor circuit, there
is a back-to-back, partial-scale static converter with a
rated power that is roughly equal to 30% of the genera-
tor's power.
For this scheme, the spectral emissions in the grid are

mainly due to the static converter. Three main types of
spectral emissions can arise at the PCC, i.e., (i) inherent
components, (ii) switching spectral components, and
(iii) spectral components due to the unbalance condi-
tions and/or background voltages [17,36].
The first category includes mostly low-frequency com-

ponents, and it is due to a non-sinusoidal air gap flux,
which produces distorted voltages and currents at the
frequencies fk = |6 k(1 − s) ± 1|f0,s, with k = 1, 2, …, and
where s is the generator slip, and f0,s is the fundamental
frequency of the stator voltage. These spectral compo-
nents are time-varying with the speed of the DFIG rotor.
The spectral components that belong to the second

class are due to both the rotor-side and grid-side con-
verters and are linked to the PWM technique that was
used. They are mostly high-frequency spectral compo-
nents, but in over-modulation conditions, low-frequency
components also can be detected. Under ideal condi-
tions, the aforesaid harmonics and interharmonics are as
follows: (i) for the grid side, in correspondence with the
frequencies f PWM;g

k;m ¼ kf sw;g �mf 0;s
h i

, with k, m = 1, 2, …
and where f0,s is the nominal frequency of the system, and
fsw,g is the PWM switching frequency on the grid side; (ii)
for the rotor side, in correspondence with the frequencies
f PWM;r
k;m ¼ kf sw;r �mf 0;r

h i
, with k, m = 1, 2, … and where

f0,r = sf0,s is the fundamental frequency of the waveform to
generate for the rotor winding, and fsw,r is the PWM
switching frequency on the rotor side.
Note that the rotor-side converter works at a fre-

quency that is linked to the generator slip and that the
aforesaid spectral components could be shifted because
of the air-gap coupling between the rotor current and
the stator circuit [36].
The third type of spectral emissions is the spectral

components that are introduced by not-ideal operating
conditions and by the WTS's auxiliary, non-linear loads,
such as controllers and motors [12,17,36].
Figure 2c shows the full-converter wind-turbine gener-

ator scheme, which consists of a permanent-magnet syn-
chronous generator connected to the grid by means of a
full-scale, power electronic converter with a rated power
that is 110% of the generator's power.
Also in this scheme, the emission of spectral compo-

nents is caused mainly by the static converter, but unlike
the previous case, there is no direct influence on the air-
gap flux, so the spectral content of the waveforms at the
PCC is less. The most significant components are har-
monics of 6 k ± 1 order (5th, 7th, 11th, 13th,…) at low
frequency, typical of a six-pulse, three-phase bridge. How-
ever, for the high frequency, the typical spectral com-
ponents of the PWM technique are detected. The
Unbalanced condition and background voltage can intro-
duce additional distortions [12-17,34,35].
WTS spectral emissions appear to vary significantly

when they are observed over a large period of time; this
is because they depend on wind conditions and, as a re-
sult, on electrical production. In addition, the harmonic
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emissions increase as the amount of power generated
increases.

1.2 Basic parametric methods for the assessment of
time-varying waveform distortion
This section deals with two of the most popular para-
metric methods used to assess waveform distortion in
power systems, i.e., the ESPRIT and the Prony methods,
which are used as the basis of the other hybrid methods
presented in Section 1.3.

1.2.1 The SW ESPRIT method
The ESPRIT method is one of the most well-known sub-
space methods that model waveform samples by means
a linear combination of M complex exponentials added
to white noise r(n). In more detail, a given sequence of
sampled data x(n) of size N is approximated by [37]:

x̂ nð Þ ¼
XM
k¼1

Ake
jψk e αkþj2πf kð ÞnTs þ r nð Þ;

n ¼ 0; 1;…; N−1

ð1Þ

where Ts is the sampling time, and Ak, ψk, fk, and αk are
the amplitude, the initial phase, the frequency, and the
damping factor of the kth complex exponential, respect-
ively, which are the unknown parameters to be evaluated.
Model (1) can be written in a matrix form as:

x̂ ¼ VΦnH þ r; ð2Þ
where:

x̂ ¼ x̂ nð Þ… x̂ nþ N1−1ð Þ½ �T ;H ¼ h1…hM½ �T ;

r ¼ r nð Þ… r nþ N1−1ð Þ½ �T ;

V ¼
1 1 … 1

e α1þj2πf 1ð ÞTs e α2þj2πf 2ð ÞTs … e αMþj2πf Mð ÞTs

⋮ ⋮ ⋱ ⋮
e α1þj2πf 1ð Þ N1−1ð ÞTs e α2þj2πf 2ð Þ N1−1ð ÞTs … e αMþj2πf Mð Þ N1−1ð ÞTs

2
664

3
775;

Φ ¼
e α1þj2πf 1ð ÞTs 0 … 0

0 e α2þj2πf 2ð ÞTs … 0
⋮ ⋮ ⋱ ⋮
0 0 … e αMþj2πf Mð ÞTs

2
664

3
775;

hk ¼ Akejψk and with N1 <N the selected order of the
correlation matrix. The symbol Φ represents the rota-
tion matrix, and its properties can be used to determine
a solution for the system (2). In particular, problem (2)
can be solved by introducing the matrix Ŝ of the eigen-
vector associated with the first M eigenvalues of the cor-
relation matrix Rx and a matrix Ψ that has the same
eigenvalues of Φ and verifies the relationship:

Ŝ2 ¼ Ŝ1Ψ; ð3Þ
where Ŝ1 ¼ IN−1 0½ �Ŝ ; Sˆ2 ¼ 0 IN−1½ �Sˆ and IN − 1 is an
identity matrix of order N − 1. Then, by using the least
squares approach, the matrix Ψ can be estimated as:

Ψ̂ ¼ Ŝ�
1Ŝ1

� �−1
Ŝ�
1Ŝ2 ð4Þ

Note that the eigenvalues λ̂i of the matrix Ψ are the ele-

ments of the main diagonal of Φ, so λ̂i ¼ e αiþj2πf ið ÞTs , and
the unknown damping factors and frequencies can be com-
puted as real and imaginary parts, respectively, of the nat-
ural logarithm of these eigenvalues. For the amplitudes, it is
necessary to use another least squares approach in which
the theoretical definition of the correlation matrix Rx [28] is:

Rx ¼ VAVH þ σ2wI; ð5Þ
where A is the diagonal matrix of the squares of the un-
known amplitudes, I is an identity matrix, and σ2w is the
variance of the white noise. In this way, by assuming
that the noise r is negligible, the initial phases also can
be evaluated by making appropriate substitutions in
Equation 2 and solving the modified equation.
If the analyzed waveform is time-varying, the Sliding-

Window ESPRIT is used with a window that slides forward
successively over time in order to obtain the time-
dependent estimates of the parameters of the ESPRIT
model [5,28].
The reliability of the results and the computational

burden of the ESPRIT method are dependent signifi-
cantly on the number of exponentials M, the order N of
the correlation matrix, and the sampling frequency [38].

1.2.2 The SW Prony method
The Prony method is another parametric method for
spectral analysis. This method models the waveform
samples by means of a linear combination of M complex
exponentials. Specifically, a given sequence of sampled
data x(n) of size N is approximated by [5]:

x nð Þ ¼
XM
k¼1

hkz
n
k n ¼ 0; 1;…;N−1; ð6Þ

where hk ¼ Akejψk and zk ¼ e αkþjωkð ÞTs . To achieve this
estimation of the unknown parameters in a traditional
way, a severely non-linear problem should be solved [5],
but the Prony's intuition allows another approach to be
used, i.e., the initial problem is divided into two systems
of linear equations, which can be solved easily.
In the first step of the aforesaid approach, the follow-

ing system of linear equations is solved to determine the
damping factors and the frequencies:

XM
m¼0

a mð Þx n−mð Þ ¼ 0 ; n ¼ M; M þ 1;…; N−1 ð7Þ
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System (7) is comprised of (N −M) linear equations,
and the coefficients a(m) are the M unknowns to be
computed. By imposing a(0) = 1, system (7) can be writ-
ten in matrix form as:

x Mð Þ x M−1ð Þ … x 1ð Þ
x M þ 1ð Þ x Mð Þ … x 2ð Þ

⋮ ⋮ ⋮ ⋮
x N−1ð Þ x N−2ð Þ … x N−Mð Þ

2
664

3
775∙

a 1ð Þ
a 2ð Þ
⋮

a Mð Þ

2
664

3
775 ¼ −

x M þ 1ð Þ
x M þ 2ð Þ

⋮
x Nð Þ

2
664

3
775

ð8Þ

After the coefficients a(m) have been determined, the
polynomial F(z) can be obtained:

F zð Þ ¼
XM
m¼0

a mð ÞzM−m ð9Þ

The roots zk of F(z) are used to calculate the damping
factors and the frequencies of each exponential by
means of simple relationships.
The second step provides the amplitude and phase of

each exponential by calculating the hk. This is possible
by replacing the obtained zk in system (6) and, so, by
solving another system of linear equations that in matrix
form is [5]:

z01 z02 … z0M
z11 z12 … z1M
⋮ ⋮ ⋮ ⋮

zM−1
1 zM−1

2 … zM−1
M

2
664

3
775∙

h1
h2
⋮
hM

2
664

3
775 ¼

x 1ð Þ
x 2ð Þ
⋮

x Mð Þ

2
664

3
775 ð10Þ

If the analyzed waveform is time-varying, the Sliding-
Window Prony is used once again with sliding windows
in order to obtain the time-dependent estimates of the
parameters of the Prony model [5,27]. In [27], an adap-
tive technique also was proposed in order to achieve an
optimal and adaptive duration of the sliding window.
The accuracy and computational burden of the Prony
method depend significantly on the number of exponen-
tials M, the number N of samples for analysis window,
and the sampling frequency [38].
Figure 3 Three-step sliding-window method.
1.3 Advanced parametric methods for the assessment of
time-varying waveform distortion
In this section, two types of advanced parametric
methods for spectral analysis are analyzed: the Three-
step Sliding-Window Hybrid method and the Sliding-
Window Modified Parametric method. These methods
are based on the parametric methods considered in
Section 1.2 and are able to provide both accurate results
and reduced computational burden.
1.3.1 The Three-step sliding-window hybrid method
The Three-step Sliding-Window Hybrid method is a joint
parametric-DFT scheme that was developed in three
stages in which either the sliding-window (SW) ESPRIT,
the SW Prony, or the SW DFTcan be used alternatively to
estimate (i) the fundamental and the interharmonic com-
ponents in the 0 to 100 Hz band, (ii) the harmonics, and
(iii) the interharmonics at frequency f > 100Hz of power
system waveforms [29,30], reducing the typical problems
that characterize the SW DFT and the SW parametric
method (i.e., spectral leakage problems and high computa-
tional efforts). Figure 3 shows the block diagram of the
three-step method.
In more detail, in the first step, the SW parametric

method (Prony or ESPRIT) is applied to the output of a
low-pass band filter of 0 to 200 Hz, in order to estimate
the power system's fundamental and the interharmonics
in the frequency range from 0 to 100 Hz. Then, the fil-
tered waveform is approximated with a linear combin-
ation of exponentials according to either the (1) (SW
ESPRIT) or (6) (SW Prony).
In the second step, the SW DFT is used to evaluate the

harmonic components; in fact, there is also an estimation
of the fundamental frequency among the outputs of the
first step, so it is possible to set the duration of the DFT
analysis window equal to an integer multiple of the funda-

mental period T̂ fund, greatly limiting the spectral leakage.
As shown in Figure 3, the waveform analyzed by the

synchronized DFT is obtained by subtracting from the
original signal x(n) the reconstructed waveform x̂l:f: nð Þ
that was obtained by the first step. The duration of the
analysis window in this step can be set to 10 cycles
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(12 cycles) of the fundamental period T̂ fund, for 50-Hz sys-
tems (60-Hz systems), according to the IEC recommenda-
tions, but if it is required, it also is possible to select a
different number of cycles [29]. We note that the aforesaid
synchronization of the DFT time window guarantees a
very accurate estimation of the harmonic components
with a reduced computational effort, and this is attribut-
able to the significant limitation of the spectral leakage
due only to the possible presence of interharmonics at fre-
quencies f > 100Hz in x1(n), which yields relatively low er-
rors [5,29].
The waveform x̂harm nð Þ in Figure 3 was obtained sum-

ming the estimated harmonics and using the results to
compute the residual x2(n) by subtracting x̂harm nð Þ from
x1(n). The waveform x2(n) is analyzed in the third step by
the same parametric method used in the beginning of the
scheme.
Note that, in the first and third steps, the number of

exponentials required in the model was considerably
lower than the number needed in the application of SW
ESPRIT or SW Prony to the full band signal. This posi-
tive outcome resulted from the explanation of the de-
composition of the waveform in different frequency
ranges separately analyzed in the first and third steps. As
a result, the Three-step SW method has a significantly
lower computational burden than SW ESPRIT or SW
Prony while still providing highly accurate results.
In order to improve the global performances of the

Three-step SW method, each step could have a different
duration of the analysis window, and then, the results
could be processed and associated with a common time
interval.

1.3.2 The sliding-window modified parametric method
The Sliding-Window Modified Parametric methods are
based on a reduction of the unknown parameters in the
signal model in the original parametric methods with ob-
vious improvements in terms of computational efforts. In
fact, starting from the consideration that the damping fac-
tors and the frequencies of spectral components in power
system applications are slightly variable versus time
[25,39-43], the estimation of frequencies is conducted only
a few times, and the damping factors are assumed to be
constant along the entire signal to be analyzed [31,32].
Specifically, in [32], the frequencies of the spectral

components were computed initially by the analysis of
the first sliding window, the basis window, and then, the
values that were obtained were assumed to be constant
with time, and they were imposed as known quantities
in the successive sliding windows (no-basis windows).
The damping factors were assumed to be null in the SW
M-Prony and fixed to previously calculated values dur-
ing the analysis of the ‘basis window’ in the SW M-
ESPRIT [32].
We note that, to elude masking effects due to significant
variation of the frequencies, it is expected that the estima-
tion of the frequencies would be repeated periodically. If
the deviation between the values obtained was greater
than a fixed threshold, the frequencies are updated and
the analysis restarts with these new values. We also note
that a different choice is required for the damping factors
in the Prony and ESPRIT methods. The damping factors,
in fact, are able to take into account temporal variations of
the amplitudes of the spectral components and to link two
consecutive sliding windows smoothly.
When the duration of the windows is very short (one to

two times the fundamental period), the damping factors
have very low values, and their contribution is negligible.
This is the case for the SW Prony, so for this method, the
damping factors are set equal to zero. However, for the
SW ESPRIT, the duration of the analysis window is signifi-
cantly larger (four to five times the fundamental period),
so in this case, the damping factors are assumed to be
constant for the no-basis windows and equal to the damp-
ing factors estimated for the basis window [32].
Figure 4 shows the block diagram of the Sliding-

Window Modified Parametric methods.
In the first window (basis window for k = 0), a trad-

itional parametric algorithm (TPA) is used to estimate
all of the unknown parameters ABW

k ; f BWk ; ψBW
k ; αBWk

� �
,

which, then, are stored; in this window, the research for
the optimal values for M and N1 or N (respectively for
the ESPRIT-based and Prony-based method) is effected,
updating them if the reconstruction error overcomes a
prefixed threshold. The same algorithm is also used after
kf windows, where another basis window is generated in
order to avoid the masking effect. The choice of the
value kf is related to the particular nature of the analyzed
waveform. In the no-basis windows, a modified paramet-
ric algorithm (MPA) is used only for the computation of
the unknown amplitudes Ak and initial phases ψk of the
spectral components, since the frequencies are equal to
f BWk , and the damping factors are forced to be null or
equal to αBWk for the Prony and ESPRIT methods, re-
spectively. Specifically, the equations solved in the MPA
when ESPRIT is used are as follows:

iÞ Rx ¼ V BWAVH
BW þ σ2wI

x̂ ¼ VBWΦn
BWH

�
ð11Þ

When Prony is used, the equation system solved in
MPA is as follows:

iÞ x nð Þ ¼
XM

k¼1
hk ẑBWk
� �n

; n ¼ 0; 1;…;N−1 ð12Þ

The assumption of constant frequencies and damping
factors inside the no-basis windows decreases the num-
ber of unknown parameters to be estimated, and the



Figure 4 sliding-window modified parametric methods.
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computational effort is reduced significantly compared
to the classical Prony or ESPRIT approach [32].

1.4 Numerical applications
The basic and advanced parametric methods shown in
Sections 1.2 and 1.3, respectively, were used to analyze
the waveform distortion due to PVSs and WTSs, and
the accuracy of their results and the computational bur-
den of the methods were compared. Several numerical
experiments were conducted, analyzing both synthetic
and measured waveforms in many operating conditions
of DG units, but for sake of brevity, only four case stud-
ies are reported in this section, and all of them are re-
ferred to the analysis of the current waveforms.
Specifically, the synthetic and measured currents of

PVSs and WTSs were analyzed by using the following:

– the IEC standard method (IECM);
– the Sliding-Window ESPRIT method (SWEM);
– the Sliding-Window Prony method (SWPM);
– the Three-step Sliding-Window ESPRIT-DFT-ESPRIT

method (SWEDEM);
– the Three-step Sliding-Window Prony-DFT-Prony
method (SWPDPM);

– the Sliding-Window Modified ESPRIT method
(SWMEM);

– the Sliding-Window Modified Prony method
(SWMPM).

The results of each case study were referred to the
same duration of signal, and the IECM computational
burden was considered as a reference for the other
methods. It is important to emphasize that, for the
IECM, since its frequency resolution was fixed at 5 Hz,
the fundamental component was always detected in cor-
respondence with 50 Hz, so the harmonic components
are estimated also as multiples of 50 Hz.
All of the programs were conducted in MATLAB, and

they were not optimized for computational speed be-
cause we were interested only in obtaining a rough and
relative quantification of the efficiency of the different
methods. The MATLAB programs were developed and
tested on a Windows PC with an Intel i7-3770 3.4 GHz
and 16 GB of RAM.
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1.4.1 Case study 1: test signal of a photovoltaic system
The synthetic 3-s waveform emulated a current at the
PCC of a PVS that had a full-bridge, unipolar inverter. It
was a sort of an ‘acid test,’ since our aim was to observe
the behavior of each of the methods in the analysis of a
waveform with a very wide spectrum, i.e., exceeding a
frequency of 20 kHz. Specifically, the waveform was as-
sembled assuming a frequency modulation index mf

equal to 200 for the inverter PWM technique and the
presence of all odd harmonics up to the 27th order for
the low-frequency components. The fundamental com-
ponent was fixed at 50.02 Hz, and it had an amplitude
of 9 A. Also, a white noise with a standard deviation of
0.001 was added to the aforesaid components.
The sampling rate was 100 kHz in order to provide

the most appropriate operating conditions for the para-
metric methods that were used so that they could pro-
vide estimates of the spectral components around the
order 2mf, which are the most significant introduced by
the aforesaid type of PWM and whose amplitudes were
fixed up to 12% of the fundamentala. For the parametric
methods, the error threshold was fixed equal to 10−5,
and for all of the methods, the window of analysis slides
of 0.04 s was used. In the second steps of both
SWPDPM and SWEDEM, the analysis window was fixed
equal to 5 cycles of the fundamental period.
Table 1 shows the average percentage errors in the esti-

mates of the frequencies and amplitudes of five spectral
components, particularly interesting in the comparison of
the methods that were used. Specifically, the components
Table 1 Case study 1: average percentage estimation errors

Fundamental 3rd

(a) Average errors by frequency [%]

SWEM 1.08 × 10−4 0.002

SWPM 5.77 × 10−5 0.001

SWEDEM 6.86 × 10−4 1.58

SWPDPM 1.55 × 10−5 1.60

SWMEM 1.12 × 10−4 0.002

SWMPM 4.43 × 10−5 0.001

IECM 0.04 0.04

(b) Average errors of amplitude [%]

SWEM 9.85 × 10−4 0.067

SWPM 4.29 × 10−4 0.026

SWEDEM 0.11 0.09

SWPDPM 0.11 0.66

SWMEM 5.27 × 10−4 0.019

SWMPM 3.86 × 10−4 0.023

IECM 0.060 0.70

Average percentage estimation errors of (a) frequencies and (b) amplitudes of the f
SWEM, SWPM, SWEDEM, SWPDEPM, SWMEM, SWMPM, and IECM.
that were examined were the fundamental and the har-
monics of order 3rd, 11th, 401st, and 405th, with ampli-
tudes equal to 1.6%, 6%, 12%, and 3% of the fundamental
amplitude, respectively.
It was evident that SWEM, SWPM, SWMEM, and

SWMPM always provided negligible percentage errors,
with values almost of the same order of magnitude. As
the first part of Table 1 shows, the percentage errors ob-
tained using the SWEDEM and the SWPDEPM also
were very low; however, the second part of Table 1
shows SWEDEM and SWPDEPM with higher errors for
the amplitude than with the other basic and advanced
parametric methods.
This behavior of the three-step methods in estimating

the amplitudes of the fundamental and third harmonic
was due to the presence of the low-pass band filter of 0
to 200 Hz, which introduces a little attenuation in the
amplitude of the components in the frequency band of 0
to 100 Hz and slight distortions for the components
near the filter cut-off frequency. However, it is important
to emphasize that, for the other harmonic components
(far from the filter cut-off frequency) both at low and
high frequency, the errors in the amplitude were practic-
ally negligible. Table 1 shows that the IECM errors were
globally higher, both in terms of frequency and ampli-
tude, and that, for the high-frequency components, the
average percentage error in the estimation of amplitudes
increased, reaching values greater than 90%.
This was due to the desynchronization between the dur-

ation of the time window and the fundamental period,
11th 401st 405th

8 1.74 × 10−4 2.93 × 10−6 1.15 × 10−5

2 8.47 × 10−5 1.18 × 10−6 4.81 × 10−6

× 10−5 1.58 × 10−5 1.58 × 10−5 1.58 × 10−5

× 10−5 1.60 × 10−5 1.60 × 10−5 1.60 × 10−5

3 1.50 × 10−4 3.01 × 10−6 1.89 × 10−6

3 2.21 × 10−5 2.27 × 10−6 5.54 × 10−7

0.04 0.04 0.04

0.016 0.0081 0.031

0.0078 0.0037 0.017

0.064 0.073 0.070

0.073 0.074 0.071

0.0056 0.0024 0.014

0.0065 0.0032 0.014

0.28 82.31 91.51

undamental, 3rd, 11th, 401st, and 405th harmonic components by means of
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which produces spectral leakage problems that increase as
the harmonic order increases. Table 2 shows the computa-
tional times obtained by using all of the methods to
analyze the 3-s waveform per unit of computational time
required by IECM. It is evident that the basic parametric
methods require greater computational time in order to
provide accurate results; however, the advanced paramet-
ric methods reduced the computational effort significantly
while simultaneously providing highly accurate results.
Note that the SWEM (SWMEM) required less computa-
tional effort than the SWPM (SWPEM); this was due to
under-sampling the signal before analysis [44].
Tables 3 and 4 are provided to make it clearer what

occurred in terms of the accuracy and computational ef-
forts when the sampling rate in SWEM and SWMEM
remained at 100 kHz. Table 3 shows that there was an
irrelevant gain in the accuracy of the results compared
to the values shown in Table 1.
However, the computational burdens of SWEM and

SWMEM (Table 3) were considerably greater than those
observed for the same methods in Table 2. This proves
that the optimal sampling rate for each parametric
method guarantees the best performance with respect to
accuracy and computational time. It also proves that the
accuracy of the results was not affected by exceeding the
optimal sampling rate, but the computational effort in-
creased significantly, especially at the very high-sampling
rates.
Table 2 shows that the computational time of SWEDEM

was greater than that of SWPDPM. This was because the
presence of the filter in the first step resulted in some neg-
ligible spectral components at low frequency that made it
impossible to reduce the signal sampling rate in the first
step of SWEDEM and maintain an acceptable accuracy.
It was interesting to observe that, in this case study, the

advanced parametric methods required computational
times that were, in the worst case (i.e., the SWEDEM and
the SWMPM), an order of magnitude greater than that
needed by the IECM. SWPDPM and SWMEM had com-
putational times that were the same order of magnitude as
that of the IECM, although these methods provided better
Table 2 Case study 1: computational time of all of the
methods

Computational time [p.u.]

SWEM 45.56

SWPM 618.03

SWEDEM 12.86

SWPDPM 4.24

SWMEM 2.87

SWMPM 10.27

IECM 1

The values are per unit of computational time required by IECM.
results than the method recommended by the IEC
standards.

1.4.2 Case study 2: measurement of the current of the
photovoltaic system
A 1-s current waveform measured at the PCC of a 10-kW,
three-phase inverter without an isolation transformer,
which, together with another twin-inverter, is included in
a PVS. The sampling rate was 10 kHz, but in order to pro-
vide better operating conditions for the detection of spec-
tral components by the parametric methods that were
used, a resampling to 20 kHz was used [44].
The error threshold for the parametric methods was

fixed at 10−3, and the window of analysis slides of 0.04 s
was used for all of the methods. In the second steps of
the SWPDPM and the SWEDEM, the analysis window
was fixed equal to 5 cycles of the fundamental period.
Figure 5 shows the time trend of the measured current.
All of the methods that were used detected mainly

low-frequency spectral components. In fact, in the fre-
quency band from 5 to 10 kHz, the advanced methods
that used the ESPRIT method and the DFT method de-
tected the same components, but the values of ampli-
tude were lower than the 0.05% of the fundamental, so
they are not discussed here.
Table 5 shows the average values of frequency and

amplitude of some spectral components detected by all
of the methods that were used. Among the most signifi-
cant spectral components, Table 5 reports the results re-
lated to the fundamental, a harmonic at about 1,000 Hz,
and an interharmonic at about 2,915 Hz. They are good
representatives that provide a perception of the behav-
iors of the methods that were used in the evaluation of
the various types of spectral components.
First, as expected, it was evident that both harmonic

and interharmonic components had low amplitudes and
that each method was able to estimate them adequately,
since the values that were obtained for both frequency
and amplitude were in a narrow range.
The IECM provided an amplitude value of about 1 order

of magnitude lower than the other methods only for the
interharmonic detection, although the component was al-
most a multiple of 5 Hz (the IECM frequency resolution).
This phenomenon was compatible with the observation in
the previous case study; in fact, it confirmed that spectral
leakage increases at high frequencies.
Table 6 shows the computational time, per unit of the

computational time required by IECM, obtained by ana-
lyzing the current waveform by all of the methods. The
advanced parametric methods always required less com-
putational time than the basic parametric methods. In
particular, all of the advanced parametric methods re-
quired a computational time that was 2 orders of magni-
tude less than those of SWEM and SWPM.



Table 3 Case study 1: average percentage estimation errors

Fundamental 3rd 11th 401st 405th

(a) Average errors of frequency [%]

SWEM 7.80 × 10−5 0.0013 1.10 × 10−4 1.53 × 10−6 6.02 × 10−6

SWMEM 6.07 × 10−5 7.39 × 10−4 9.75 × 10−5 3.22 × 10−6 2.29 × 10−7

(b) Average errors of amplitude [%]

SWEM 5.30 × 10−4 0.026 0.0092 0.0046 0.018

SWMEM 2.58 × 10−4 0.029 0.0036 0.0034 0.014

Average percentage estimation errors of (a) frequency and (b) amplitude of spectral components detected by SWEM and SWMEM.
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Also, in this case, the SWMEM was the method that
came the closest to matching the performance of IECM
with respect to computational time. Note that, for the
analysis of the measured current, all of the advanced
parametric methods required computational times that
were only 1 order of magnitude greater than that re-
quired by IECM.
1.4.3 Case study 3: test signal of wind turbine system
The synthetic 1-s waveform emulated a current at the
PCC of a WTS that had a doubly fed induction generator.
Also, this case study was a sort of ‘acid test,’ since our aim
was to observe the behavior of each of the methods in the
analysis of a waveform with a spectrum that exceeded a
frequency of 2 kHz and that had embedded successive
harmonic and interharmonic components.
The waveform was assembled assuming a frequency

modulation index mf of 40, and the fundamental fre-
quency and amplitude were fixed at 50.02 Hz and 5.4 A,
respectively. Figure 6 shows the low-frequency and the
high-frequency spectrum of the test signal. White noise
with a standard deviation of 0.001 was added to the sig-
nal in order to make the waveform more realistic and to
stress the performance of the spectral analysis methods
that were used.
The sampling rate was 20 kHz. For the parametric

methods, the error threshold was fixed at 5 × 10−8, and
for all of the methods, the window of analysis slides was
0.04 s. In the second steps of both the SWPDPM and
the SWEDEM, the analysis window was equal to 10 cy-
cles of the fundamental period.
Table 7 shows the average percentage errors in the es-

timates of the frequency and amplitude of the five
Table 4 Case study 1: computational time for the
oversampled waveform

Computational time [p.u.]

SWEM 107.01

SWMEM 58.57

Relative computational time in p.u. of IECM time, when the analyzed
waveform was over-sampled at 100 kHz.
spectral components, which are particularly interesting
for comparing the methods that were used. Specifically,
the components that were examined were the funda-
mental, the 5th, and the 38th order of harmonic and two
interharmonics at 74.79 and 382.35 Hz.
In this case study, it was observed that the SWPM, in

order to provide reasonably accurate results, requires a
very high number of exponentials M, and as a result, it
also requires a high value of N for the optimal window
of analysis. This is due to the contemporaneous presence
of noise interference and many small spectral compo-
nents in the signal. In fact, since the Prony signal model
does not include noise, Prony-based methods require an
increasing number of M in the presence of so many small
spectral components and noise. Basically, the SWPM adds
many spectral components to the real spectrum, since it
also must individuate the noise spectrum to approach the
analyzed waveform adequately.
However, it is easier for the SWEM to detect the

spectrum, since noise is accounted for in its model.
However, as shown in Table 7, both the SWPM and the

SWEM provide better results in terms of accuracy, with
average percentage errors of the same order of magnitude.
Obviously, noise interference also was a problem for

the SWMPM, which produced less accurate results than
the SWMEM; however, it performed well in detecting
the spectral components, with errors of the same order
of magnitude as the basic parametric methods (error of
less than 0.021% for the estimation of frequency and less
than 0.9% for the estimation of the amplitude). The sec-
ond part of Table 7 shows that the SWPDPM and the
SWEDEM had some difficulties in estimating the ampli-
tudes of the components up to the fifth harmonic; as
underlined in case study 1, this was due to the effect of
the low-pass band filter. However, the first part of Table 7
shows that the average percentage errors for these
methods were comparable to the best results obtained
by the basic methods.
However, in the estimations of both the frequency and

the amplitude, the IECM had the largest errors, espe-
cially for the interharmonic components, which were de-
tected with average percentage errors in the frequency



Figure 5 Case study 2: time trend of the analyzed current.
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of 0.2% and 0.6% for the components near 74.79 and
382.35 Hz, respectively. For the same components, the
average errors of amplitude were even worse, at 3% and
31%, respectively.
Table 8 shows the computational time required to

analyze the test signal by all of the methods. Also in this
case, the SWEM and the SWPM appear to be the slow-
est methods, whereas the advanced parametric methods
had computational times that were significantly less than
those of SWEM and SWPM. In fact, in the best case,
they were only 1 order of magnitude greater than the
time required by IECM. In particular, once again,
Table 5 Case study 2: average values

Fundamental Harmonic Interharmonic

(a) Average values of
frequency [Hz]

SWEM 49.98 1001.38 2915.63

SWPM 49.97 1001.61 2914.50

SWEDEM 49.98 999.55 2911.02

SWPDPM 49.98 999.51 2912.03

SWMEM 49.98 1001.15 2912.28

SWMPM 49.97 1000.73 2912.00

IECM 50.00 1000.00 2915.00

(b) Average values of
amplitude [A]

SWEM 13.44 0.18 0.15

SWPM 13.39 0.24 0.15

SWEDEM 13.38 0.23 0.14

SWPDPM 13.39 0.23 0.14

SWMEM 13.44 0.27 0.15

SWMPM 13.44 0.24 0.14

IECM 13.40 0.20 0.052

Average values of (a) frequency and (b) amplitude of the fundamental, a
harmonic, and an interharmonic detected by SWEM, SWPM, SWEDEM,
SWPDEPM, SWMEM, SWMPM, and IECM.
SWMEM is the method that required a computational
time that was the closest to that of IECM.
1.4.4 Case study 4: measured signal of wind turbine system
A 6-s current waveform measured during the soft start-
ing of a fixed-speed wind turbine was analyzed. The ori-
ginal sampling rate was 2,048 Hz, so a resampling at
10 kHz was conducted.
For the parametric methods, the error threshold was

fixed equal to 10−7, and the window of analysis slides was
0.02 s for all of the methods. In the second steps of both
the SWPDPM and the SWEDEM, the analysis window
was fixed equal to 3 cycles of the fundamental period.
Figure 7 shows the highly time-varying trend of this wave-
form, which allowed us to test and compare methods also
in the analysis of a non-stationary waveform.
As was predictable based on the theoretical consider-

ations reported in Section 1.1, all of the methods identi-
fied the 3rd, 5th, 7th, and 11th harmonics as significant
components, in addition to the fundamental. The ampli-
tudes of the aforesaid components were characterized
initially by an increasing trend up to a maximum value,
after which the descending phase began and continued
until each component achieved its steady-state value.
Table 6 Case study 2: computational time

Computational time [p.u.]

SWEM 9447.06

SWPM 5227.87

SWEDEM 21.59

SWPDPM 15.58

SWMEM 11.75

SWMPM 21.35

IECM 1

Computational time, in p.u. of the computational time required by the IECM,
of all of the methods.



Figure 6 Case study 3: spectrum of the WTS test signal. (a) Low-frequency spectrum; (b) high-frequency spectrum.

Table 7 Case study 3: average percentage errors

Fundamental 74.79 Hz 5th 382.35 Hz 38th

(a) Average errors of frequency [%]

SWEM 1.18 × 10−4 0.0036 9.24 × 10−4 0.0041 3.75 × 10−5

SWPM 7.84 × 10−5 0.0013 4.35 × 10−4 0.0015 2.39 × 10−5

SWEDEM 0.0056 0.0063 0.0042 0.0028 0.0042

SWPDPM 9.37 × 10−5 0.0025 1.60 × 10−5 0.0019 1.60 × 10−5

SWMEM 3.88 × 10−4 0.0041 0.0028 0.021 5.18 × 10−5

SWMPM 0.0016 0.011 0.11 0.12 3.69 × 10−4

IECM 0.04 0.28 0.04 0.64 0.04

(b) Average errors of amplitude [%]

SWEM 0.0019 0.059 0.066 0.48 0.026

SWPM 0.0012 0.039 0.035 0.22 0.028

SWEDEM 0.19 2.80 2.01 0.43 0.25

SWPDPM 0.19 2.77 2.09 0.36 0.077

SWMEM 0.0014 0.027 0.20 0.89 0.011

SWMPM 0.0058 1.16 1.50 7.34 0.041

IECM 0.10 3.41 2.15 31.48 3.12

Estimation of the average percentage errors of the fundamental, harmonic components, and interharmonics obtained by SWEM, SWPM, SWEDEM, SWPDEPM,
SWMEM, SWMPM, and IECM: (a) frequencies; (b) amplitudes.
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Table 8 Case study 3: computational time

Computational time [p.u.]

SWEM 2116.47

SWPM 6507.25

SWEDEM 79.79

SWPDPM 180.81

SWMEM 11.84

SWMPM 30.02

IECM 1

Computational time, in p.u. of the computational time required by the IECM,
of all of the methods.
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Table 9 reports the maximum peak values of ampli-
tude for the fundamental, the fifth, and the seventh har-
monics that were detected by the methods that were
used.
The results presented in Table 9 provide evidence that

the IECM had significant spectral leakage since the esti-
mated values always were considerably lower than those
obtained by the parametric methods. These lasts, in fact,
estimate, for each component, values that differ slightly
from each other.
Note that, as expected, the behaviors of the time

trends of the frequencies were different; in fact, all of the
parametric methods had spectral-component frequencies
with negligible time variations.
Table 10 shows the computational time required by all

of the methods to analyze the current's waveform. The
results were similar to those in the previous case study.
It is important to observe that the SWMEM required a
computational time that was only double that of IECM.
2 Conclusions
In this paper, we analyzed some methods used to esti-
mate waveform distortions caused by photovoltaic and
wind turbine systems. An overview of the waveform
Figure 7 Case study 4: time trend of the analyzed current waveform.
distortions caused by the most common configurations
of PVSs and WTS schemes was also provided.
The theoretical aspects of the basic and advanced

parametric methods proposed in literature were pre-
sented, focusing on their high accuracy while, at the
same time, emphasizing how the advanced parametric
methods have the advantage of having computational
times that are significantly less than those required by
the basis parametric methods.
The basic parametric methods that were considered

were the Sliding-Window ESPRIT method and the
Sliding-Window Prony method. The advanced paramet-
ric methods were the following:

the Three-step Sliding-Window ESPRIT-DFT-ESPRIT
method;
the Three-step Sliding-Window Prony-DFT-Prony
method;
the Sliding-Window Modified ESPRIT method;
the Sliding-Window Modified Prony method.

These methods were used in the spectral analysis of
synthetic and measured currents of PVSs and WTSs in
order to compare them in terms of the accuracy of the
results they produced and computational efforts for both
stationary and non-stationary waveforms. The wave-
forms were analyzed also by the IEC standard method,
which we used as a reference for comparisons of compu-
tational times.
The case studies that were considered highlighted the

importance of an adequate sampling rate for the para-
metric methods and the importance of the effect of
noise on the detection of spectra by the Prony-based
method when the signal components have very small
amplitudes. In fact, in these cases, the ESPRIT-based
methods can estimate the spectral components more
easily, requiring a lower computational burden than the
methods that use the Prony model.



Table 9 Case study 4: estimated peak values

Maximum peak value [A]

Fundamental 5th 7th

SWEM 866.92 139.96 66.97

SWPM 857.84 139.79 64.56

SWEDEM 867.06 139.31 64.14

SWPDPM 867.68 139.26 63.90

SWMEM 864.24 143.03 70.99

SWMPM 867.52 140.25 67.19

IECM 814.20 133.40 58.50

Peak values of the fundamental, 5th, and 7th harmonics detected by SWEM,
SWPM, SWEDEM, SWPDEPM, SWMEM, SWMPM, and IECM.
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All of the parametric methods were shown to have high
levels of accuracy, exceeding that provided by the IECM,
especially when the waveform spectrum was very wide.
The IECM, in fact, failed in the detection of both interhar-
monic components and high-frequency harmonics.
Conversely, the advanced parametric methods took

less computational effort than the basic parametric
methods, with computational times of the same order of
magnitude or no more than 1 order or magnitude
greater than that of the IECM. The aforesaid numerical
experiments also demonstrated that the SWMEM gener-
ally provided the best compromise between high-
accuracy results and low computational effort.
It is important to note that, for very wide spectra, the

three-step solution could inspire a new method for spec-
tral analysis in which separating the waveform into low-
and high-frequency components could result in the
rapid and accurate detection of the spectral components
of both the aforesaid bands by adapting the duration of
the analysis window to the lowest frequency of each
band.

3 Appendix A - IEC method
The standards IEC 61000-4-7 [23] and IEC 61000-4-30
[22] propose to use, for the spectral analysis of the non-
stationary waveforms, the Sliding-Window Discrete Fou-
rier Transform, which consists of applying the DFT to
Table 10 Case study 4: computational time

Computational time [p.u.]

SWEM 145.44

SWPM 367.38

SWEDEM 25.34

SWPDPM 57.26

SWMEM 2.34

SWMPM 4.29

IECM 1

Computational time, in p.u. of the computational time required by the IECM,
of all of the methods.
consecutive windows that slide forward successively over
time.
If x(n) is a waveform sampled data, it is possible to ob-

tain the corresponding N-point DFT, X(k), as:

X kð Þ ¼
XN−1

n¼0

x nð Þe−j2π k
Nn; k ¼ 0; 1;…;N−1 ð13Þ

The SW DFT, Xm(k), by definition, follows from the
(13), introducing, for the sampled waveform x(n) with
length L, a window function w(n), generally rectangular,
with size N < L:

Xm kð Þ ¼
XN−1

n¼0

x nð Þw n−mð Þe−j2π k
Nn; k ¼ 0; 1;…;N−1

ð14Þ
where m is the starting time instant.
It is worth to observe that the aforesaid window func-

tion is very important both in terms of analysis reso-
lution and of spectral leakage. Specifically, it is
important to choose adequately the time duration Tw of
the analysis window; in fact, for a sampling interval Ts, it
is Tw =NTs, and the frequency resolution of the
spectrum is f = 1/Tw, so the selected value N has to be a
compromise to obtain a good resolution both in time
and in frequency. According to the IEC standard, for a
rectangular window, the compromise is a time duration
Tw equal to 10 and 12 cycles of fundamental period, re-
spectively, for 50-Hz systems and 60-Hz systems [22,23].
Moreover, selecting a synchronized window with a Tw

equal to an integer multiple of the waveform fundamen-
tal period, it is also possible to avoid the spectral leakage
phenomenon, which is the most significant problem of
the DFT method, because it impacts negatively on the
analysis results accuracy. In this regard, the time duration
recommended by the IEC standards becomes generally in-
adequate, especially in the presence of interharmonic
components.

3.1 Endnote
aNote that, as shown in [44], if fs is the chosen sam-

pling rate, the Prony's method is able to detect a max-
imum component at a frequency of fs/4, whereas the
ESPRIT method can estimate components up to fs/2.
Then, the signal was under-sampled at 50 kHz before
the application of SWEM and SWMEM.

Abbreviations
DER: distributed energy resources; DFIG: doubly fed induction generator;
DFT: Discrete Fourier Transform; DG: dispersed generation; IEC: International
Electrotechnical Committee; IECM: IEC standard method; MPPT: maximum
power point tracking; PCC: point of common coupling; PQ: power quality;
PVS: photovoltaic system; PWM: pulse-width modulation; SCIG: squirrel-cage
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