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 

Abstract— In this paper a reformulation of the widely used 
one-diode model of the PV cell is introduced, employing the 
Lambert W function. This leads to an efficient PV string model, 
where the terminal voltage is expressed as an explicit function of 
the current, resulting in significantly reduced calculation times 
and improved robustness of simulation. The model is 
experimentally validated and then used for studying the 
operation of PV strings under partial shading conditions. Various 
shading patterns are investigated, to outline the effect on the 
string I-V and P-V characteristics. Simplified formulae are then 
derived to calculate the Maximum Power Points (MPPs) of a PV 
string operating under any number of irradiance levels, without 
resorting to detailed modeling and simulation. Both the explicit 
model and the simplified expressions are intended for application 
in shading loss and energy yield calculations. 
 

Index Terms— Explicit model, Lambert W function, 
Maximum Power Point, Partial shading, PV string, Simplified 
formulae 

NOMENCLATURE 

a  Modified diode ideality factor of the PV cell 

bpa  Modified diode ideality factor of the bypass diode 

b  Breakdown correction factor of the PV cell 

jG  Irradiance incident on cell strings group j, in per unit 

(p.u.) of STC value (1000 W/m2) 

mpjI  PV string current at MPPj 

phI  PV cell photocurrent  

sI  PV cell diode saturation current 

sbpI  Bypass diode saturation current 

csSCI ,  PV cell string short circuit current 

MPPj Local maximum power point j 

csN  Number of cell strings within each PV module 

jN  Number of cell strings in the group j 

mN  Number of PV modules in the PV string 
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n  Number of irradiance levels on the PV string 
m  Breakdown coefficient of the PV cell 

sN  Number of series-connected cells in each cell string 

mpjP  PV string power at MPPj 

sR  Series resistance of the PV cell equivalent circuit 

shR  Shunt resistance of the PV cell equivalent circuit 
STC Standard Test Conditions: Irradiance 1000 W/m2,  
 Cell temperature 25 °C, Air Mass 1.5 

brV  Breakdown voltage of the PV cell 

cellV  PV cell voltage 

csV  PV cell string voltage 

jV  Voltage of cell strings group j 

modV  PV module voltage 

00 , mpmp IV  PV module MPP voltage and current at STC 

mpjV  PV string voltage at MPPj 

0ocV  PV module open circuit voltage at STC 

strV  PV string voltage 

DV  Voltage drop on a conducting bypass diode 
  Empirical coefficient for Impj  

I. INTRODUCTION 

T non-uniform lighting conditions, parts of the PV 
generator experience different irradiance, giving rise to 
multiple local Maximum Power Points (MPPs), which 

hinder efficient MPP tracking and lead to suboptimal 
performance. 

The standard approach to PV modeling employs the one-
diode PV cell electrical equivalent [1]-[2]. Alternative 
methods for energy yield estimation based on experimental 
results and empirical formulations are presented in [3]-[5]. 
These techniques are commonly applied for uniform 
irradiance conditions, where the PV cell equations can be 
directly extrapolated to the entire PV generator. 

At mismatched operating conditions more sophisticated 
methods are required, allowing separate modeling of PV cells 
operating at different illumination levels. In [6], the PV array 
is modeled by a system of equations numerically solved via 
the iterative Newton’s method. Improvements are reported in 
[7], presenting a more robust iterative convergence procedure, 
and in [8] utilizing an artificial neural network for increased 
execution speed. Related work on changing illumination 
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conditions is presented in [9] and the development of a 
reduced system of equations is reported in [10]. Moreover, the 
use of simplified explicit expressions leading to an optimized 
method for energy yield estimation is proposed in [11]. A 
drawback of these methods is computational complexity and 
convergence issues due to the numerical solution of large 
systems of equations. In [12], the two-diode PV cell 
equivalent circuit is implemented in P-Spice to analyze the 
performance of a single PV module at non-uniform irradiance. 
In [13], a simple experimental model is proposed for shading 
effects, presenting moderate accuracy. 

In previously published work, the Lambert W function has 
been utilized to model a single PV cell [14]-[15] or to describe 
a PV module and form a system of equations for the entire 
array [16]-[18]. In [19] a single equation is introduced for the 
PV string, which is iteratively solved to obtain the current for 
a given voltage. This work assumes uniformly illuminated 
individual PV modules when analyzing partially shaded arrays 
and employs a linear approximation for the bypass diodes. 

In this paper, an efficient and accurate model, based on the 
Lambert W function, is presented and applied to analyze the 
performance of PV module strings under non-uniform 
irradiance conditions. The model makes use of the Lambert W 
function to express the PV string voltage as an explicit 
function of its current, avoiding the need for iterative solution 
and hence achieving faster and more robust execution. 
Compared to the model of [19], shading analysis here goes 
down to the PV cell level, rather than to the level of the PV 
module, a 4-quadrant I-V representation is adopted and the 
bypass diode is described by its logarithmic equation. The 
explicit PV string model introduced is suitable for calculations 
where the I-V curve of a PV string needs to be obtained in an 
efficient and robust manner, as in energy yield calculation and 
PV array optimization software. 

Another core contribution of this paper is the derivation of 
simple expressions that directly evaluate the MPPs of PV 
strings, using only module datasheet information. This work 
expands the concept of [12], which was limited only to PV 
modules, to the entire PV string. The formulae are derived for 
the general case of non-uniform shading conditions, where the 
PV string may experience multiple irradiance levels, giving 
rise to multiple MPPs on the P-V curve. The simplified 
expressions permit evaluation of shading losses and MPPT 
effectiveness in shaded conditions in a most simple manner, 
completely avoiding the need for laborious modeling and 
simulation. 

The structure of the paper is as follows: The explicit PV 
string model is introduced in Section II and experimentally 
validated in Section III, using outdoor measurements. The 
model is then applied in Section IV to analyze the effect of 
partial shading on PV string performance, for various shading 
patterns. Simplified expressions which directly provide the 
MPPs for the general case of multi-peak P-V curves are 
derived in Section V. 

II. PV STRING MODELING 

A. PV cell electrical equivalent 

Various electrical equivalents of the PV cell may be found 

in the literature, the one-diode model being the most widely 
used, as it combines simplicity and reasonable accuracy [1], 
[8]-[10]. The two-diode model described in [6] and [20] 
provides more accurate results at low irradiance levels, 
whereas more precise descriptions of PV cell operation at 
negative voltage are presented in [7], [21]-[26].  

In this study, the one-diode model of Fig. 1 is adopted, [1], 
enhanced by an extension term to represent more accurately 
the negative diode breakdown operation [7], [22], [25]-[26]. 
The operation of the PV cell is described by the implicit 
equation: 
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In (1) terms Iph, Is, a, Rs, Rsh are the 5 parameters of the 
model. Coefficients b, Vbr and m are important for modeling 
the operation at negative voltage. 

Identification of the 5 parameters is based on the method 
introduced in [1], first calculating reference (STC) values from 
datasheet information and then extrapolating to the actual 
operating conditions. Typical values are assumed for the 
breakdown terms, close to the values used in [7], [22], [25]: 
b=0.002Ω-1, Vbr=-21.29V, m=3. 

The I-V curve of a PV cell, as calculated by (1), is depicted 
in Fig. 2. The avalanche breakdown effect at negative voltages 
is shown, which is of key importance in partial shading 
analysis. 

B. Explicit PV cell model using the Lambert W function 

The transcendental form of (1) leads to I-V calculation 
through iterative numerical procedures, such as Newton’s 
method. Modeling of larger PV structures is achieved by 
forming a system of equations, in which each cell is separately 
described by a single equation [6]-[9], [11]. However, when 
reaching the level of entire PV strings or arrays, the resulting 
equation system tends to become prohibitively large, imposing 
a heavy computational burden and raising convergence issues. 
To circumvent this problem, an alternative approach is 
employed, where the base equation of the PV cell is expressed 
in an explicit form V=f(I). In the next section, this approach is 
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Fig. 2.  4-quadrant I-V curve of a typical PV cell. 
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Fig. 1.  PV cell electrical equivalent circuit. 
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extended to PV modules and then to the level of PV strings. 
Eq. (1) can be simplified by observing that, at negative 

voltages, the exponential term of the conducting diode reaches 
near-zero values as diode D is reverse biased. Further, at 
positive voltages, the last term in (1), modeling the avalanche 
breakdown effect, has no practical significance. Therefore, the 
base PV cell equation can be modified as follows, employing 
simplified expressions for each operating region: 
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At positive voltages, (2) is identical to the typical equation 
of the standard one-diode model, which can be solved for the 
voltage using the Lambert W function: 
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where the series expansion approximations employed here for 
evaluating W{x} are given in the Appendix. 

At negative voltages, (2) may be transformed to a quartic 
equation, if the typical value m=3 is assumed [7], [22], [25]: 
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where 
scellbr RIVVz  . 

The PV cell voltage Vcell is then given by the minimum real 
root of the polynomial equation (4), zRmin=min{real{z}}, 
which can be obtained by application of the fast and robust 
Ferrari’s method for solving quartic equations [27]-[28]. 
Although m=3 is often considered [7], [22], [25], a wider 
range of m values, between 3 and 6, is also suggested [21], 
[23]-[24], [26]. In such a case, (4) turns into a polynomial 
equation of higher degree, which can be numerically solved, 
although not as efficiently as using the explicit formula of 
Ferrari. 

Finally, (5) below constitutes the explicit expression for 
evaluating the PV cell voltage as a function of its current: 
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C. Explicit model for PV strings 

In PV modules, bypass diodes are connected in parallel to 
groups of series-connected PV cells, to prevent development 
of high negative voltages on the cells and hot-spot 
phenomena. In this way, cell strings are formed, consisting of 
Ns series-connected PV cells (e.g. as in Fig. 7). The bypass 
diode conducts only at negative voltages, effectively shorting 
the cell string terminals, whose voltage is thus clipped to the 
forward voltage drop of the diode (typically around 0.7 V). 

A typical cell string I-V characteristic is shown in Fig. 3, 
with and without a bypass diode. The latter has an impact only 
at negative voltages, where the cell string I-V curve effectively 
becomes that of the conducting diode. To determine Vcs in this 

operating region (approximately -0.7 to 0 V), the bypass diode 
equation can be used, observing that the cell string itself (red 
line in Fig. 3) operates at practically constant current, equal to 
its short circuit current ISC,cs, and therefore the diode carries 
the difference of the total current I minus ISC,cs. Hence, given 
the cell string current I, its voltage Vcs may be calculated from:  
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In the first and fourth quadrant, the cell string voltage is 
simply the sum of the individual cell voltages, Vcell-i, given by 
(5). In the second quadrant, ISC,cs may be taken equal to the 
minimum short circuit current of the individual cells in the 
string, approximated by the respective photocurrents. 

A PV module, composed by a number of Ncs cell strings 
connected in series, is described by: 
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and a PV string consisting of Nm modules connected in series: 

)8()(
1

mod



Nm

i
istr IVV  

Eqs. (5)-(8) constitute the explicit model of the PV string, 
giving in a straightforward manner its voltage as a function of 
its current, without any need for iterative procedures. 

At this point it is essential to highlight similarities and 
differences of this approach with previous relevant studies. In 
[16]-[17] the Lambert W function is used to describe the PV 
module and form a system of equations for the PV array, 
numerically solvable by Newton’s method. An improvement 
is reported in [18], where the inverse Jacobian matrix is 
explicitly determined. These methods do not overcome the 
computational burden of an iterative solution procedure. 

In [19], the Lambert W function is used to express the PV 
string voltage as an explicit function of the current. The PV 
module constitutes the basic building block (since uniformly 
illuminated individual PV modules are assumed at partial 
array shading) and a simplified bypass diode representation is 
adopted, consisting of a voltage source and a series resistor. 
Further, a numerical solution is still employed in the 
implementation of the model, as the voltage is selected to be 
the independent variable. On the other hand, the model 
introduced here goes down to the cell level, describing 
operation at negative voltages, which is important in partial 
shading conditions, while the fundamental bypass diode 
equation is used, without any simplification. In this way, the 
partial shading of individual modules is appropriately modeled 
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Fig. 3.  I-V curve of a PV cell string with and without a bypass diode. 
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and the effect of bypass diodes is more accurately described. 
Since the model is intended for energy yield calculations and 
PV system analysis, involving calculation of the I-V 
characteristic, the current is used as the independent variable, 
obviating the need for an iterative solution. 

The PV string model presented above provides also the 
basis for addressing PV arrays consisting of several PV strings 
connected in parallel. Two alternative approaches are possible 
in this case: predetermination of the I-V curve of each string 
and graphical superposition of the individual curves to 
construct the array I-V characteristic, as in [10], or iterative 
solution of each string’s equations for a given terminal voltage 
and then summation of the individual currents, as in [19]. 

In the first approach, the proposed PV string model is 
utilized to calculate explicitly the I-V curve for each string, 
using a suitably selected vector of string currents as input 
variable. Thereafter, the I-V curves of the individual strings 
are summed using a common voltage axis and linear 
interpolation is applied to identify any particular operating 
point of the array on the curve. Although the superposition 
procedure involves calculation of multiple operating points on 
the I-V curve, it introduces negligible computation burden, 
since it employs simple algebraic operations. 

The second approach involves the numerical solution of eq. 
(8) for each PV string, at a given terminal voltage, using an 
iterative method, such as Newton’s, in order to determine the 
resulting string current value. PV string currents are then 
summed to obtain the total current of the array. This method 
suffers from the computational cost of an iterative solution 
procedure and the related convergence issues. Still, its 
application is feasible and appealing as only a small number of 
independent equations needs to be solved (one per string). 

D. Comparison of standard and explicit models 

The explicit PV string model overcomes the shortcomings 
of the standard PV cell modeling approach, permitting 
efficient calculation, without convergence issues, initialization 
difficulties and other numerical inefficiencies. The “standard 
model” used as a reference here is the equation system derived 
by applying (1) for all cells. This can be numerically solved, 
e.g. by the Newton’s method with appropriate optimization 
(efficient initialization strategy, predetermination of Jacobian 
matrix etc.). 

The gain in computational effort is demonstrated in Fig. 4. 
The diagram shows the ratio of the execution time required to 
determine the I-V characteristic of a PV string using the 
standard model to that using this paper’s model, against the 
total number of cells in the PV string. For a practical string, 

 
comprising 600-1000 PV cells, a reduction of 2-3 orders of 
magnitude can be achieved using the proposed explicit model. 

In Fig. 5 a similar comparison is shown for the case of a PV 
array, using either the standard model or the two alternative 
approaches proposed in the previous section. Assuming strings 
of 20 PV modules (960 cells) each, the I-V curve of an array 
comprising 2-10 strings in parallel is calculated (at 100 
discrete points). To facilitate comparison, the computational 
burden is normalized on the time required by the explicit 
model to perform the I-V curve calculation of a single string. 
As expected, the standard model (blue line) exhibits an 
exponential increase of the computational cost with the 
number of strings, as the system of equations tends to become 
oversized. The curve superposition approach (red line) 
presents a proportional dependence on the number of strings, 
as the computational cost is practically associated only with 
the determination of the I-V curve of each individual string. 
The method of solving the explicit equations of the strings 
also presents a burden proportional to the size of the array. 
This cost is greater than for the curve superposition method, as 
the individual PV string equations need to be solved 
iteratively, but still remains low compared to the standard 
model (linear instead of exponential increase of the burden). 

In terms of accuracy, modeling the PV cell by (2) yields 
almost identical results compared to the fundamental eq. (1), 
the error being lower than 0.1%. The number of terms chosen 
for the Lambert W series (see Appendix) is sufficient and the 
separation of (1) in two branches using Iph as the inflection 
point is justified. At extreme shading conditions, such as when 
1 cell out of 16 is heavily shaded at an irradiance level of 
G=0.1 p.u. (while G=1.0 p.u. is considered for the unshaded 
part), as shown in Fig. 6, the explicit model may deviate 
slightly at negative voltages, due to the ISC,cs estimation used 
in the second branch of (6). The difference is noticeable on the 
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Fig. 6.  I-V curve of a PV cell string, when 1 cell out of 16 is heavily 
shaded at G=0.1 p.u., using the standard and the explicit model. 
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Fig. 5.  Time required to calculate the I-V characteristic of a PV array vs. 
the number of strings in the array, using the standard model and the two 
proposed approaches. Execution times are normalized on the time 
required to simulate a single PV string by the explicit model. 
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Fig. 8.  Experimental and simulated I-V and P-V curves of a partially shaded (a) PV module and (b) PV string. 
 

diagram but has no significant effect on the application of the 
model, since it corresponds to the local minima of the P-V 
curve. 

III. EXPERIMENTAL VALIDATION OF THE MODEL 

The model introduced in Section II is experimentally 
validated for a single PV module and a string of modules. For 
this purpose, outdoor measurements were taken at a string of 
commercial PV modules operating at different irradiance 
levels and shading patterns. The datasheet characteristics of 
the modules are shown in Table I and the physical layout of 
the cells in Fig. 7. Three cell strings are formed, of 16 cells 
each. The model parameters for the PV cell at STC are 
presented in Table II. The reference values of the 5 parameters 
Iph, Is, a, Rs, Rsh are extracted from the module datasheet 
characteristics and then extrapolated to the actual operating 
conditions according to [1]. For the breakdown terms b, Vbr, m 
typical constant values are assumed, similar to those in [7], 
[22], [25]. The bypass diode coefficients Isbp and abp are 

based on [7]-[8], adjusted by laboratory measurements of the 
I-V curve of the diodes. 

The I-V curve of the module was recorded at two different 
irradiance levels, while shading patterns were generated using 
shading materials with transmittance rates (TR) of 28% and 
50%. In Fig. 8(a), the measured and calculated I-V and P-V 
characteristics of the PV module are shown for an indicative 
partial shading scenario (2 cell rows, i.e. 1/3 of the module 
area) at two operating conditions: G=0.98 p.u./Tc=48°C and 
G=0.49 p.u./Tc=39°C respectively. The efficiency of the 
model in representing the actual PV module characteristic is 
satisfactory over the entire range of the I-V curves and for all 
shading scenarios. This is further confirmed in Table III, 
where the MPP power calculation error is presented for 
several shading scenarios. 

A similar procedure was followed to validate the accuracy 
of the model in the case of PV strings. A string consisting of 
12 series-connected identical PV modules was used, (Fig. 7) 
whose characteristics are given in Table I and measurements 
were taken at several operating conditions. Indicative results 
are presented in Fig. 8(b), for a case where 8 modules are 
partially shaded over 2/3 of their surface (4 cell rows each) 
using a shading material with TR=56% at G=0.97 
p.u./Tc=52°C. Results for different shading patterns of the PV 
string are summarized in Table III. 

IV. PV STRING OPERATION UNDER PARTIAL SHADING  

The purpose of this section is to illustrate the response of a 
PV string when it is partially shaded. To facilitate 

TABLE III 
MPP CALCULATION ERROR OF THE EXPLICIT MODEL COMPARED TO 

MEASUREMENTS 

PV module PV string 

Shading  
scenario 

MPP error (%) 
Shading  
scenario 

MPP error 
(%) 

(TR=56%) 
Series #1 

(TR=28%) 
Series #2 

(TR=50%) 
Unshaded 0.67 0.93 Unshaded 2.53 
1 row shade 4.18 1.02 2 rows shade 2.16 
2 rows shade 0.88 1.85 4 rows shade 0.79 
4 rows shade 0.68 3.62 1 module shade 2.88 
1 column shade 0.73 1.25 6 modules shade 3.24 
4 columns shade 1.05 2.36 1 cell string shade 3.37 
3x2 cells shade 3.07 0.31 8 modules by 4 

rows each shade 
1.70 

Full shade 2.55 0.48 

 

PV module 

 
PV string  

Fig. 7.  Layout of the PV module and string used in the measurements. 

 Bypass 
diode PV cell 

TABLE II 
CELL PARAMETERS FOR THE EXPERIMENTAL PV MODULE AT STC 

Iph(A) Is(A) a(V) Rs(Ω) Rsh(Ω) b(Ω-1) Vbr(V) m  Isbp(A) abp(V) 

7.93 3.8e-10 0.025 0.013 3.3 0.002 -21.93    3 1.6e-9 0.05 

 

TABLE I 
EXPERIMENTAL PV MODULE DATASHEET CHARACTERISTICS 

Model Type Ns Ncs Isc0 (A) Voc0 (V) Imp0 (A) Vmp0 (V) 

Yingli YL-165 mc-Si 16 3 7.90 29.0 7.20 23.0 
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understanding of the phenomenon, first the simplified case of 
two irradiance levels (corresponding to the shaded and 
unshaded areas) is analyzed, where only two MPPs appear on 
the P-V characteristic. Then, the observations made are 
extended to the general case of n irradiance levels, where up to 
n MPPs may appear. 

A. PV cell 

The PV cell is the elementary building block of a PV string 
and its operation is described by (1). The irradiance level 
affects linearly the short circuit current and logarithmically the 
open circuit voltage [4], [22]. In Fig. 9(a), the effect of the 
incident irradiance on the I-V curve of one cell is shown for 
the PV module under study.  

B. PV cell string 

Since all cells in a cell string carry the same current, at 
partial shading conditions the unshaded cells operate at 
reduced current, restricted by the short circuit current of the 
shaded cells. In Fig. 9(b) a cell string (16 cells) of the study -
case PV module is simulated for an increasing number of 
shaded cells. The irradiance on the unshaded and shaded parts 
is G1=1.0 p.u. and G2=0.5 p.u., respectively. Even for a 
minimum number of shaded cells, the I-V curve of the 
partially shaded cell string approaches that of the fully shaded 
string. This well-known fact [8], [22] is a common modeling 
simplification. 

C. PV module 

The operation of a PV module in partial shading conditions 
has been extensively investigated in [12]. Fig. 10(a) presents 
the response of the study-case PV module for an increasing 
number of shaded cells. Assuming 2 levels of irradiance on the 
module, the module P-V curve presents 2 local maxima, MPP1 
and MPP2, and 2 groups of cell strings are formed, group 1 
(unshaded) and group 2 (shaded), illuminated at G1=1.0 p.u. 
and G2=0.5 p.u. respectively. Around MPP1 the shaded cell 
strings (group 2) are bypassed and only the unshaded ones 
(group 1) generate power, whereas at the MPP2 region all cell 
strings contribute to power generation at reduced current. 

  
When only one cell string experiences shading of various 

degrees (1-16 cells shaded), the corresponding curves do not 
deviate significantly from each other, since the partially 
shaded cell string operates approximately as a fully shaded 
one. When 17-32 cells are shaded, MPP1 is shifted to lower 
voltages, since only N1=1 cell string is unshaded, while the 
remaining N2=2 cell strings are bypassed. However, when all 3 
cell strings are shaded, MPP1 is completely suppressed 
because none of the bypass diodes conducts and the P-V 
characteristic is dominated by the series-connected shaded cell 
strings. MPP2 remains little affected in any of the above cases. 

In Fig. 10(b) one cell string of the PV module is fully 
shaded (N2=1) at various intensities G2, while the other two 
operate unshaded (N1=2, G1=1.0 p.u.). In all cases, MPP1 is 
unaffected since the shaded cell string is bypassed, while 
MPP2 is affected by the changing irradiance levels G2. 

In conclusion, a PV module operating under non-uniform 
lighting conditions typically presents 2 maxima on its P-V 
curve, if one level of shade is considered. The first (MPP1) is 
primarily affected by the number of unshaded cell strings N1, 
while the second (MPP2) mainly depends on the irradiance G2 

on the shaded part. 

D. PV string 

From a modeling point of view, a PV string can be treated 
as an oversized PV module, comprising several series-
connected cell strings. In this section, the 12-module PV string 
of Fig. 7 is simulated, both in landscape and portrait 
orientation, considering several realistic shading scenarios and 
assuming one level of shade. Typical patterns along with the 
resulting P-V curves are shown in Fig. 11. 

A first observation is the appearance of 2 local maxima 
(corresponding to MPP1 and MPP2 of Fig. 10), following 
similar trends as for the single PV module. This is reasonable, 
because the PV string is composed by unshaded and (partially 
or fully) shaded groups of cell strings connected in series and 
its response depends on the number of cell strings in each 
group, regardless of their location within the string and the 
number of shaded cells within each cell string. 
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Fig. 10.  P-V curves of a shaded PV module for (a) different number of 
shaded cells (G1=1.0 p.u., G2=0.5 p.u.) and (b) different irradiance level 
on the shaded part G2 (1 cell string shaded). 
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Fig. 9.  I-V curves of a shaded (a) PV cell at different irradiance levels 
and (b) PV cell string for different number of shaded cells (G1=1.0 p.u., 
G2=0.5 p.u.). 
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(a) Landscape orientation – 1 cell row shade (b) Portrait orientation – 1 cell row shade 
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(c) Landscape orientation – 1 cell column shade (d) Portrait orientation – 1 cell column shade 
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(e) Landscape orientation – 4x48 cells shaded area (f) Portrait orientation – 4x48 cells shaded area 

Fig. 11.  P-V curves of a partially shaded PV string in landscape and portrait orientation at typical shading scenarios (one level of shade). 

 
In Fig. 11(a)-(b) a shadow pattern most commonly 

encountered in practice is shown. It affects one cell row at the 
bottom of all modules, impacting thus only 12 cell strings 
when in landscape mode, but all 36 cell strings in portrait 
orientation, in which case MPP1 is entirely suppressed. This 
will lead to reduced overall performance at deep levels of 
shadow (G2<0.5 p.u.), provided that MPP operation is possible 
at the substantially reduced voltages near MPP1. On the other 
hand, the portrait mode is slightly less sensitive to lateral 
shading, as in Fig. 11(c)-(d), because the shadow expands cell 
string-by-cell string, rather than module-by-module as in the 
landscape mode. For diagonal shadow patterns, as shown in 
Fig. 11(e)-(f), more partially shaded cell strings exist in 
portrait. In conclusion, the landscape orientation is slightly 
less susceptible to shadow effects in most practical situations. 

The P-V curves of a PV string subject to two irradiance 
levels present up to 2 local MPPs, regardless of the shade level 
or pattern, since the exact location of the shaded cell strings 
along the entire series-connected chain does not matter. 
Hence, two MPPs are also observed when a PV string extends 
to more than one rows, a situation common in installations 
where the length of the arrays is limited. 

E. Partial shading at n irradiance levels 

Although the assumption of one level of shade is common, 
in the general case a partially shaded PV string may be 
subjected to several different irradiance levels. This situation 
might occur when different objects cast shadows on the array 
(e.g. an adjacent array and a solid object at a greater distance), 

giving rise to more than two MPPs on the P-V curve. 
In Fig. 12, an indicative scenario of a PV string illuminated 

at three irradiance levels, G1, G2 and G3, is depicted. The 
respective cell string groups comprise N1=18, N2=6 and N3=12 
cell strings. 

In this case, 3 MPPs are presented on the P-V curve. At 
MPP1 only group 1 generates power, while groups 2 and 3 are 
bypassed. At MPP2 groups 1 and 2 contribute to power 
generation at the reduced current determined by G2, while 
group 3 is bypassed. At MPP3 all three groups generate power 
at the lowest current imposed by the least illuminated group 3. 
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Fig. 12.  Indicative case of a partially shaded PV string, illuminated at 
three irradiance levels (G1=1.0 p.u., G2=0.7 p.u., G3=0.3 p.u.). 
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These observations are readily generalized to a PV string 
illuminated at n irradiance levels Gj, j=1..n, sorted in 
decreasing order (Gi>Gj, i>j). Then, n local MPPs may appear 
on the P-V curve of the string, provided that a sufficient 

number (n) of bypass diodes exists, a condition implicitly 
assumed to be valid in the following. At MPPj, cell string 
groups j+1 to n are shorted by the respective bypass diodes, 
while groups 1 to j operate at the current dictated by the 
irradiance level Gj, incident on group j. Thus, a conceptual 
association can be established between each local MPPj and 
the irradiance level Gj on group j, comprising Nj cell strings. 

V. SIMPLIFIED FORMULAE FOR DIRECT DETERMINATION OF 

MPPS IN PARTIALLY SHADED PV STRINGS 

In this section, simple expressions are derived to evaluate 
the voltage and current of the MPPs of a partially shaded PV 
string, using only PV module datasheet information and 
completely avoiding the modeling required in order to derive 
the P-V characteristics of the entire string. In Section V.A the 
simplified case of one shade level is first analyzed in detail, to 
provide the basis for generalization to n irradiance levels in 
Section V.B. 

A similar analysis has been performed in [12], however 
only for the case of a single PV module, rather than a string. 
Further, the granularity of the modeling approach in [12] is too 
fine, extending down to the PV cell level, which is not 
practical when dealing with entire PV strings or arrays. 

To derive the equations in the following, cell temperature 
changes are ignored (all cells operate at 25 °C). Since the 
performance of partially and fully shaded cell strings is 
similar, the effect of shadow on the operation of the entire PV 
string depends on the number of irradiance levels n and their 
intensities Gj, j=1..n, as well as the number Nj of cell strings in 
each group j. The exact geometric shape of the shadow does 
not have any significance. 

A. Simplified expressions for two irradiance levels 

In this case, two groups of cell strings are formed, 
comprising N1 and N2 cell strings, that operate at irradiance 
levels G1 and G2 (unshaded and shaded part, respectively). As 
discussed in Section IV, at MPP1 the shaded cell strings are 
bypassed and the equivalent circuit of the PV string consists of 
N1 unshaded cell strings connected in series to N2 conducting 
bypass diodes. Hence, the following equation, reformulated 
from [12], gives the voltage, Vmp1, of MPP1: 

)9(2

0

11 D

cs

mp

mp ΔVN
N

V
NV   

where Vmp0/Ncs is the MPP voltage of a single unshaded cell 
string, which depends very little on the irradiance, and ΔVD is 
the voltage drop across a bypass diode (typically 0.7-1.0 V). 

The current at MPP1 is considered to be directly 
proportional to the irradiance G1 of the unshaded group: 

(10)011 mpmp IGI   

In Fig. 13, the dependence of Vmp1, Imp1 and Pmp1 on N2 and 
G2 is illustrated for the study-case PV string (considering 
G1=1.0 p.u. on the unshaded group). Continuous lines 

 
represent simulation results obtained with the explicit model, 
while dotted lines are obtained with the simplified 
expressions. From Fig. 13 it is clear that the MPP1 is indeed 
rather independent of the irradiance on the shaded part G2, 
while Vmp1 appears to vary linearly with N2 (and therefore N1, 
as well), as assumed in (9). Eq. (10) provides a satisfactory 
estimate of Imp1, except when too many cell strings are shaded. 
Then, Imp1 decreases because of the accumulated voltage drop 
on the conducting bypass diodes, which effectively alters the 
I-V curve and shifts MPP1 to larger voltages and lower 
currents (Figs. 13(a), (b)). However, the errors in Vmp1 and Imp1 
at large values of N2 tend to counterbalance each other, 
resulting in an accurate enough evaluation of Pmp1 over the 
entire range of N2 (Fig. 13(c)). In any case, MPP1 is not 
important under extended shading, as the P-V curve is 
typically dominated by MPP2. Actually, there is a critical 
value of N2 (N2=32 in Fig. 13) above which MPP1 does not 
exist, because the unshaded cell strings cannot “overcome” the 
voltage drop on the conducting bypass diodes.  

In the MPP2 region, all cell strings participate in power 
generation, operating at the reduced current imposed by the 
shaded ones. In this case, the PV string voltage Vmp2 is the sum 
of the voltages of all cell strings: 

)11(22112 VNVNVmp   

The voltage V2 of each shaded cell string is assumed to be 
equal to its MPP voltage, Vmp0/Ncs, and independent of the 
irradiance G2, as mentioned previously. 

The voltage V1 of the unshaded cell strings is estimated via 
a linear approximation, as illustrated in Fig. 14. The actual I-V 
curve of each unshaded cell string (continuous blue line) is 
approximated in the MPP2 region by a straight line (dotted 
blue line), passing through the MPP and open circuit points: 
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where the MPP and open circuit voltages are assumed to be 
independent of the incident irradiance G1, while the MPP 
current is directly proportional to G1. Considering Imp2 at 
MPP2 to be also proportional to the irradiance G2 on the 
shaded group, G2∙Imp0, V1 is then given by the intersection of 
the blue and green dotted lines by setting I=G2∙Imp0 in (12): 
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Fig. 13.  (a) Vmp1, (b) Imp1 and (c) Pmp1 dependence on the number of 
shaded cell strings (N2) and the irradiance on the shaded part (G2) for the 
study-case PV string (G1=1.0 p.u.). 
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Hence, the complete expression for Vmp2 becomes: 

)14()1(
0

2
0

1

20

1

2
12

cs

mp

cs

oc

cs

mp

mp
N

V
N

N

V

G

G

N

V

G

G
NV 








  

Moreover, extensive simulations showed Imp2 to be directly 
proportional to G2 and to vary linearly with the number of 
unshaded cell strings N1, leading to the following expression:  
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where the empirical coefficient λ, estimated via regression on 
the simulation results for several commercial mono-crystalline 
(c-Si) and multi-crystalline (mc-Si) PV modules, presents 
small variance, leading to the adoption of λ=0.06 as a typical 
value. 

The dependence of MPP2 on N2 and G2 is depicted in Fig. 
15. While the Vmp2 estimation is of moderate accuracy at small 
values of G2, the approximation of Imp2 is satisfactory, leading 
to a fairly accurate evaluation of Pmp2. 

The final expressions which permit direct evaluation of the 
MPP1 and MPP2 voltages and currents of a partially shaded 
PV string at two irradiance levels are the following:  
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B. Generalized expressions for n irradiance levels 

In the general case, the PV string may be subjected to more 
than two irradiance levels, giving rise to several MPPs on the 
P-V curve, as discussed in Section IV.E. In Fig. 16, a 
simplified example is shown of a PV string comprising four 
cell strings illuminated at different irradiance levels (i.e. 1 cell 
string per group). The resulting P-V curve presents four MPPs, 
associated with the operation of the individual cell strings as 
explained in Section IV.E. E.g. at MPP3 cell strings 1-3 
operate at the reduced current Imp3, dictated by the irradiance 

level G3 of group 3, while group 4 is bypassed. The voltage 
Vmp3 is the sum of the voltages Vj of the component cell 
strings. Since groups 1 and 2 operate at reduced current, V1 
and V2 may be estimated by a linear approximation similar to 
eq. (13). Group 3 operates at V3=Vmp0/Ncs, while the bypassed 
group 4 contributes the voltage drop on its bypass diode, ΔVD. 
Hence: 
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The concept of eq. (15) is directly extended to provide Imp3, 
which varies in direct proportion to the irradiance G3 and 
depends to a small extent on the number of cell strings in 
groups 1 and 2: 
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Following this line of thought, the final expressions for the 
MPPs in the general case of n irradiance levels are readily 
derived. For MPPj (j=1..n): 
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Vmpj in eq. (19a) is the sum of the linearly approximated 
voltage contributions of the j-1 groups with higher incident 
irradiances, plus the MPP voltage of group j, minus the 
voltage drops on the bypass diodes of the remaining n-j 
groups, which are illuminated less than group j. Eq. (19b) 
reflects the predominant dependence of Impj on the irradiance 
level Gj on group j, along with the secondary effect of the j-1 
groups, which are more illuminated than group j. 

The simplified equations derived in this section are 
validated through comparison with the explicit model of 
Section II, for a variety of commercially available c-Si and 
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Fig. 14.  Approximation of unshaded cell string voltage, V1, at MPP2. 
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Fig. 15.  (a) Vmp2, (b) Imp2 and (c) Pmp2 dependence on the number of 
shaded cell strings (N2) and on the shaded part (G2) for the study-case PV 
string (G1=1.0 p.u.). 
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mc-Si PV modules. A great number of possible shading 
scenarios were simulated for a PV string comprising 20 
modules and experiencing four irradiance levels, varying in 
the range of 100-1100 W/m2 (110,606 scenarios in total). The 
estimation error of the simplified formulae (19) in calculating 
the global MPP of the entire string (Pmp, Vmp, Imp) are shown in 
Table IV for ten indicative commercial modules (RMS and 
maximum errors over all examined shading scenarios). The 
statistical distribution of the error is presented in Fig. 17 for 
one example module. The overall performance of the 
simplified formulae is absolutely satisfactory, considering the 
great simplification achieved for the evaluation of the MPP, 
using only datasheet information. RMS errors are lower than 
2% in all cases, while the maximum errors recorded (up to 
9%) correspond to extreme shading scenarios. 

VI. CONCLUSION 

In this paper, an explicit PV string model using the Lambert 
W function was introduced, which combines the versatility 
and accuracy provided by the one-diode model with a 
significantly faster and more robust execution, intended to be 
used for energy yield calculations and PV system analysis and 
optimization. The proposed model was experimentally 
validated, at the level of a PV module and a PV string, and 
proved to be satisfactory in most practical situations. 

The model was then used to study the operation of partially 

shaded PV strings, experiencing several irradiance levels, 
which give rise to multi-peak P-V characteristics. Simplified 
equations were introduced in the paper to estimate the multiple 
MPPs using only basic datasheet information, dispensing with 
the need to resort to laborious modeling and time-consuming 
simulations. The accuracy of the simplified equations is 
proved to be quite satisfactory, permitting quick and reliable 
estimation of partial shading effects on a PV string. 

APPENDIX 

The Lambert W function W{x} is the inverse of the equation 

xeW W  , and in the last decades has found many 
applications in pure and applied mathematics [29]-[33]. It 
cannot be expressed in terms of elementary functions, so 
computational environments such as Matlab© use iterative 
algorithms to provide generalized calculation of all complex 
branches at machine’s accuracy. However, when focused on 
the main branch W0 at positive real values, several series 
expansions may be found in the literature, each one 
convergent at certain ranges. Here, an asymptotic formula for 
moderate and large real values is chosen [29], combined with 
a series expansion accurate at small values [34], and 
formulated with the appropriate number of terms so that the 
relative error is maintained below 0.1%: 

For 0≤x≤9: 
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where u=x/e and p=1-x/e. 
For x≥9: 
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where L1=ln(x) and L2=ln(ln(x)). 
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Fig. 16.  I-V curve of a PV string comprising four cell strings, each 
illuminated at a different irradiance level. I-V curves of individual cell 
strings also shown in color. Focus on the operating points of individual 
cell strings at MPP3. 

 

 

TABLE IV 
ERROR OF GLOBAL MPP ESTIMATION USING THE SIMPLIFIED FORMULAE 

(19), FOR A PV STRING CONSISTING OF VARIOUS COMMERCIAL PV 

MODULES, OPERATING AT 4 IRRADIANCE LEVELS 

PV modules 
Pmp error (%) Vmp error (%) Imp error (%) 

RMS MAX RMS MAX RMS MAX 

Yingli YL-165 1.60 8.03 1.00 5.45 1.19 7.29 

Aleo s18-235 1.66 8.58 1.22 4.02 0.69 5.73 

Suntech STP 280-24/Vd 1,53 7,20 1,28 2,93 0,67 4,97 

Conergy PH 240P 1.69 8.56 1.17 4.05 0.80 6.61 

Upsolar UP-M240P 1.28 8.32 0.92 4.16 0.67 5.70 

Siliken SLK60P6L 1.28 8.32 0.92 4.16 0.67 5.70 

Bosch M60-245 1.50 8.17 1.05 3.75 0.71 5.46 

Suntech STP240s 1.26 7.51 0.97 5.04 0.63 4.83 

Sunpower E19/240 1.11 5.66 0.92 4.63 0.52 3.50 

Upsolar UP-M205M 1.30 6.55 1.03 3.19 0.60 5.11 
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Fig. 17.  Histogram of global MPP estimation errors of the simplified 
equations (19) applied to a study-case string of 20 PV modules (Yingli 
YL-165), operating at 4 irradiance levels (100 W/m2 – 1100 W/m2). 
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