71 research outputs found
Probable detection of starlight reflected from the giant exoplanet orbiting tau Bootis
Giant planets orbiting stars other than the Sun are clearly detectable
through precise radial-velocity measurements of the orbital reflex motion of
the parent star. In the four years since the discovery of the companion to the
star 51 Peg, similar low-amplitude ``Doppler star wobbles'' have revealed the
presence of some 20 planets orbiting nearby solar-type stars. Several of these
newly-discovered planets are very close to their parent stars, in orbits with
periods of only a few days. Being an indirect technique, however, the
reflex-velocity method has little to say about the sizes or compositions of the
planets, and can only place lower limits on their masses. Here we report the
use of high-resolution optical spectroscopy to achieve a probable detection of
the Doppler-shifted signature of starlight reflected from one of these objects,
the giant exoplanet orbiting the star tau Bootis. Our data give the planet's
orbital inclination i=29 degrees, indicating that its mass is some 8 times that
of Jupiter, and suggest strongly that the planet has the size and reflectivity
expected for a gas-giant planet.Comment: 15 pages, 4 figures. (Fig 1 and equation for epsilon on p1 para 2
revised; changed from double to single spacing
Dusty Planetary Systems
Extensive photometric stellar surveys show that many main sequence stars show
emission at infrared and longer wavelengths that is in excess of the stellar
photosphere; this emission is thought to arise from circumstellar dust. The
presence of dust disks is confirmed by spatially resolved imaging at infrared
to millimeter wavelengths (tracing the dust thermal emission), and at optical
to near infrared wavelengths (tracing the dust scattered light). Because the
expected lifetime of these dust particles is much shorter than the age of the
stars (>10 Myr), it is inferred that this solid material not primordial, i.e.
the remaining from the placental cloud of gas and dust where the star was born,
but instead is replenished by dust-producing planetesimals. These planetesimals
are analogous to the asteroids, comets and Kuiper Belt objects (KBOs) in our
Solar system that produce the interplanetary dust that gives rise to the
zodiacal light (tracing the inner component of the Solar system debris disk).
The presence of these "debris disks" around stars with a wide range of masses,
luminosities, and metallicities, with and without binary companions, is
evidence that planetesimal formation is a robust process that can take place
under a wide range of conditions. This chapter is divided in two parts. Part I
discusses how the study of the Solar system debris disk and the study of debris
disks around other stars can help us learn about the formation, evolution and
diversity of planetary systems by shedding light on the frequency and timing of
planetesimal formation, the location and physical properties of the
planetesimals, the presence of long-period planets, and the dynamical and
collisional evolution of the system. Part II reviews the physical processes
that affect dust particles in the gas-free environment of a debris disk and
their effect on the dust particle size and spatial distribution.Comment: 68 pages, 25 figures. To be published in "Solar and Planetary
Systems" (P. Kalas and L. French, Eds.), Volume 3 of the series "Planets,
Stars and Stellar Systems" (T.D. Oswalt, Editor-in-chief), Springer 201
A rocky composition for an Earth-sized exoplanet
Planets with sizes between that of Earth (with radius R[subscript circle in cross]) and Neptune (about 4 R[subscript circle in cross]) are now known to be common around Sun-like stars. Most such planets have been discovered through the transit technique, by which the planet’s size can be determined from the fraction of starlight blocked by the planet as it passes in front of its star. Measuring the planet’s mass—and hence its density, which is a clue to its composition—is more difficult. Planets of size 2–4 R[subscript circle in cross] have proved to have a wide range of densities, implying a diversity of compositions, but these measurements did not extend to planets as small as Earth. Here we report Doppler spectroscopic measurements of the mass of the Earth-sized planet Kepler-78b, which orbits its host star every 8.5 hours (ref. 6). Given a radius of 1.20 ± 0.09 R[subscript circle in cross] and a mass of 1.69 ± 0.41 M[subscript circle in cross], the planet’s mean density of 5.3 ± 1.8 g cm[superscript −3] is similar to Earth’s, suggesting a composition of rock and iron.Kepler Participating Scientist Progra
The effect of linking community health centers to a state-level smoker's quitline on rates of cessation assistance
<p>Abstract</p> <p>Background</p> <p>Smoking cessation quitlines are an effective yet largely untapped resource for clinician referrals. The aim of this study was to assess the effect of a fax referral system that links community health centers (CHCs) with the New York State Quitline on rates of provider cessation assistance.</p> <p>Methods</p> <p>This study was conducted in four CHCs using a quasi experimental study design. Two comparison sites offered usual care (expanded vital sign chart stamp that prompted providers to ask about tobacco use, advice smokers to quit, assess readiness, and offer assistance (4As)) and two intervention sites received the chart stamp plus an office-based fax referral link to the New York State Quitline. The fax referral system links patients to a free proactive telephone counseling service. Provider adherence to the 4 As was assessed with 263 pre and 165 post cross sectional patient exit interviews at all four sites.</p> <p>Results</p> <p>Adherence to the 4As increased significantly over time in the intervention sites with no change from baseline in the comparison sites. Intervention sites were 2.4 (p < .008) times more likely to provide referrals to the state Quitline over time than the comparison sites and 1.8 (p < .001) times more likely to offer medication counseling and/or a prescription.</p> <p>Conclusions</p> <p>Referral links between CHCs and state level telephone quitlines may facilitate the provision of cessation assistance by offering clinicians a practical method for referring smokers to this effective service. Further studies are needed to confirm the efficacy of fax referral systems and to identify implementation strategies that work to facilitate the utilization of these systems across a wide range of clinical settings.</p
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
Review"; The final publication is available at http://www.springerlink.co
In Search of an Uncultured Human-Associated TM7 Bacterium in the Environment
We have identified an environmental bacterium in the Candidate Division TM7 with ≥98.5% 16S rDNA gene homology to a group of TM7 bacteria associated with the human oral cavity and skin. The environmental TM7 bacterium (referred to as TM7a-like) was readily detectable in wastewater with molecular techniques over two years of sampling. We present the first images of TM7a-like cells through FISH technique and the first images of any TM7 as viable cells through the STARFISH technique. In situ quantification showed TM7 concentration in wastewater up to five times greater than in human oral sites. We speculate that upon further characterization of the physiology and genetics of the TM7a-like bacterium from environmental sources and confirmation of its genomic identity to human-associated counterparts it will serve as model organisms to better understand its role in human health. The approach proposed circumvents difficulties imposed by sampling humans, provides an alternative strategy to characterizing some diseases of unknown etiology, and renders a much needed understanding of the ecophysiological role hundreds of unique Bacteria and Archaea strains play in mixed microbial communities
Network Structure Implied by Initial Axon Outgrowth in Rodent Cortex: Empirical Measurement and Models
The developmental mechanisms by which the network organization of the adult cortex is established are incompletely understood. Here we report on empirical data on the development of connections in hamster isocortex and use these data to parameterize a network model of early cortical connectivity. Using anterograde tracers at a series of postnatal ages, we investigate the growth of connections in the early cortical sheet and systematically map initial axon extension from sites in anterior (motor), middle (somatosensory) and posterior (visual) cortex. As a general rule, developing axons extend from all sites to cover relatively large portions of the cortical field that include multiple cortical areas. From all sites, outgrowth is anisotropic, covering a greater distance along the medial/lateral axis than along the anterior/posterior axis. These observations are summarized as 2-dimensional probability distributions of axon terminal sites over the cortical sheet. Our network model consists of nodes, representing parcels of cortex, embedded in 2-dimensional space. Network nodes are connected via directed edges, representing axons, drawn according to the empirically derived anisotropic probability distribution. The networks generated are described by a number of graph theoretic measurements including graph efficiency, node betweenness centrality and average shortest path length. To determine if connectional anisotropy helps reduce the total volume occupied by axons, we define and measure a simple metric for the extra volume required by axons crossing. We investigate the impact of different levels of anisotropy on network structure and volume. The empirically observed level of anisotropy suggests a good trade-off between volume reduction and maintenance of both network efficiency and robustness. Future work will test the model's predictions for connectivity in larger cortices to gain insight into how the regulation of axonal outgrowth may have evolved to achieve efficient and economical connectivity in larger brains
Challenges and Pitfalls in the Management of Parathyroid Carcinoma: 17-Year Follow-Up of a Case and Review of the Literature
A 29-year-old man presented to his primary care physician with nausea, severe weight loss and muscle weakness. He had a hard, fixed neck swelling. He was severely hypercalcaemic with 10-fold increased parathyroid hormone (PTH) concentrations. A diagnosis of primary hyperparathyroidism was established and the patient was referred for parathyroidectomy. At neck exploration, an enlarged parathyroid gland with invasive growth into the thyroid gland was found and removed, lymph nodes were cleared and hemithyroidectomy was performed. A suspected diagnosis of parathyroid carcinoma was confirmed histologically. Serum calcium and PTH levels normalised post-operatively, but hyperparathyroidism recurred within 3 years of surgery. Over the following 17 years, control of hypercalcaemia represented the most difficult challenge despite variable success achieved with repeated surgical interventions, embolisations, radiofrequency ablation of metastases and treatment with calcimimetics, bisphosphonates and haemodialysis using low-dialysate calcium. In this paper, we report the challenges and pitfalls we encountered in the management of our patient over nearly two decades of follow-up and review recent literature on the topic
An automated Raman-based platform for the sorting of live cells by functional properties
Stable-isotope probing is widely used to study the function of microbial taxa in their natural environment, but sorting of isotopically labelled microbial cells from complex samples for subsequent genomic analysis or cultivation is still in its early infancy. Here, we introduce an optofluidic platform for automated sorting of stable-isotope-probing-labelled microbial cells, combining microfluidics, optical tweezing and Raman microspectroscopy, which yields live cells suitable for subsequent single-cell genomics, mini-metagenomics or cultivation. We describe the design and optimization of this Raman-activated cell-sorting approach, illustrate its operation with four model bacteria (two intestinal, one soil and one marine) and demonstrate its high sorting accuracy (98.3 ± 1.7%), throughput (200-500 cells h-1; 3.3-8.3 cells min-1) and compatibility with cultivation. Application of this sorting approach for the metagenomic characterization of bacteria involved in mucin degradation in the mouse colon revealed a diverse consortium of bacteria, including several members of the underexplored family Muribaculaceae, highlighting both the complexity of this niche and the potential of Raman-activated cell sorting for identifying key players in targeted processes.</p
- …