537 research outputs found

    Detection and molecular characterisation of Cryptosporidium parvum in British European hedgehogs (Erinaceus europaeus)

    Get PDF
    Surveillance was conducted for the occurrence of protozoan parasites of the genus Cryptosporidium in European hedgehogs (Erinaceus europaeus) in Great Britain. In total, 108 voided faecal samples were collected from hedgehogs newly admitted to eight wildlife casualty treatment and rehabilitation centres. Terminal large intestinal (LI) contents from three hedgehog carcasses were also analysed. Information on host and location variables, including faecal appearance, body weight, and apparent health status, was compiled. Polymerase Chain Reaction (PCR) targeting the 18S ribosomal RNA gene, confirmed by sequencing, revealed an 8% (9/111) occurrence of Cryptosporidium parvum in faeces or LI contents, with no significant association between the host or location variables and infection. Archived small intestinal (SI) tissue from a hedgehog with histological evidence of cryptosporidiosis was also positive for C. parvum by PCR and sequence analysis of the 18S rRNA gene. No other Cryptosporidium species were detected. PCR and sequencing of the glycoprotein 60 gene identified three known zoonotic C. parvum subtypes not previously found in hedgehogs: IIdA17G1 (n=4), IIdA19G1 (n=1) and IIdA24G1 (n=1). These subtypes are also known to infect livestock. Another faecal sample contained C. parvum IIcA5G3j which has been found previously in hedgehogs, and for which there is one published report in a human, but is not known to affect livestock. The presence of zoonotic subtypes of C. parvum in British hedgehogs highlights a potential public health concern. Further research is needed to better understand the epidemiology and potential impacts of Cryptosporidium infection in hedgehogs

    The Enzymatic Activity of Type 1 Iodothyronine Deiodinase (D1) is Low in Liver Hemangioma: A Preliminary Study

    Get PDF
    Type 1 iodothyronine deiodinase (D1) is a crucial enzyme which converts the prohormone thyroxine (T4) into active tri-iodothyronine (T3). There has been strong evidence that the metabolism of thyroid hormones is disturbed in some neoplastic tissues such as thyroid, renal, and breast cancer. However, there are few available data about D1 enzyme activity in benign tumors such as hemangioma, which is the most common primary liver tumor. Hence this study aimed to determine the enzymatic activity of D1 in hemangiomas in relation to healthy liver tissue. Seven tumors and healthy control tissues were obtained from patients who had liver resection due to hemangioma. The activity was assessed by measurement of radioactive iodine released by deiodination catalyzed by D1. It was found that D1 activity was significantly lower in the hemagiomas than in the healthy surrounding tissue (p = 0.0017). The results indicated that thyroid hormones play important roles not only in the regulation of cell metabolism, but also in cell growth, division, and apoptosis. The active form T3 acts through its nuclear receptors and influences the up- and down-regulation of target genes. Healthy liver tissue expresses a high level of D1, but disturbed D1 activity may result in changes in the local concentration of T3 which may impair gene transcription. These finding demonstrate a low enzymatic activity of D1 in liver hemangioma and suggest an as yet unknown role of thyroid hormones in this type of benign liver tumor

    A portable X-pinch design for x-ray diagnostics of warm dense matter

    Get PDF
    We describe the design and x-ray emission properties (temporal, spatial, and spectral) of Dry Pinch I, a portable X-pinch driver developed at Imperial College London. Dry Pinch I is a direct capacitor discharge device, 300 × 300 × 700 mm3 in size and ∼50 kg in mass, that can be used as an external driver for x-ray diagnostics in high-energy-density physics experiments. Among key findings, the device is shown to reliably produce 1.1 ± 0.3 ns long x-ray bursts that couple ∼50 mJ of energy into photon energies from 1 to 10 keV. The average shot-to-shot jitter of these bursts is found to be 10 ± 4.6 ns using a combination of x-ray and current diagnostics. The spatial extent of the x-ray hot spot from which the radiation emanates agrees with previously published results for X-pinches—suggesting a spot size of 10 ± 6 µm in the soft energy region (1–10 keV) and 190 ± 100 µm in the hard energy region (>10 keV). These characteristics mean that Dry Pinch I is ideally suited for use as a probe in experiments driven in the laboratory or at external facilities when more conventional sources of probing radiation are not available. At the same time, this is also the first detailed investigation of an X-pinch operating reliably at current rise rates of less than 1 kA/ns

    fMRI Evidence for a Dual Process Account of the Speed-Accuracy Tradeoff in Decision-Making

    Get PDF
    Background: The speed and accuracy of decision-making have a well-known trading relationship: hasty decisions are more prone to errors while careful, accurate judgments take more time. Despite the pervasiveness of this speed-accuracy tradeoff (SAT) in decision-making, its neural basis is still unknown. Methodology/Principal Findings: Using functional magnetic resonance imaging (fMRI) we show that emphasizing the speed of a perceptual decision at the expense of its accuracy lowers the amount of evidence-related activity in lateral prefrontal cortex. Moreover, this speed-accuracy difference in lateral prefrontal cortex activity correlates with the speedaccuracy difference in the decision criterion metric of signal detection theory. We also show that the same instructions increase baseline activity in a dorso-medial cortical area involved in the internal generation of actions. Conclusions/Significance: These findings suggest that the SAT is neurally implemented by modulating not only the amount of externally-derived sensory evidence used to make a decision, but also the internal urge to make a response. We propose that these processes combine to control the temporal dynamics of the speed-accuracy trade-off in decisionmaking

    FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell lymphomas.

    Get PDF
    The FOXP1 (forkhead box P1) transcription factor is a marker of poor prognosis in diffuse large B-cell lymphoma (DLBCL). Here microarray analysis of FOXP1-silenced DLBCL cell lines identified differential regulation of immune response signatures and major histocompatibility complex class II (MHC II) genes as some of the most significant differences between germinal center B-cell (GCB)-like DLBCL with full-length FOXP1 protein expression versus activated B-cell (ABC)-like DLBCL expressing predominantly short FOXP1 isoforms. In an independent primary DLBCL microarray data set, multiple MHC II genes, including human leukocyte antigen DR alpha chain (HLA-DRA), were inversely correlated with FOXP1 transcript expression (P<0.05). FOXP1 knockdown in ABC-DLBCL cells led to increased cell-surface expression of HLA-DRA and CD74. In R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone)-treated DLBCL patients (n=150), reduced HLA-DRA (<90% frequency) expression correlated with inferior overall survival (P=0.0003) and progression-free survival (P=0.0012) and with non-GCB subtype stratified by the Hans, Choi or Visco-Young algorithms (all P<0.01). In non-GCB DLBCL cases with <90% HLA-DRA, there was an inverse correlation with the frequency (P=0.0456) and intensity (P=0.0349) of FOXP1 expression. We propose that FOXP1 represents a novel regulator of genes targeted by the class II MHC transactivator CIITA (MHC II and CD74) and therapeutically targeting the FOXP1 pathway may improve antigen presentation and immune surveillance in high-risk DLBCL patients

    Upregulation of UCP2 by Adiponectin: The Involvement of Mitochondrial Superoxide and hnRNP K

    Get PDF
    Background: The adipocyte-derived hormone adiponectin elicits protective functions against fatty liver diseases and hepatic injuries at least in part by stimulating the expression of a mitochondrial inner membrane transporter, uncoupling protein 2 (UCP2). The present study was designed to investigate the cellular and molecular mechanisms underlying adiponectin-induced UCP2 expression. Methodology/Principal Findnigs: Mice were treated with adiponectin and/or different drug inhibitors. Parenchymal (PCs) and nonparenchymal (NPCs) cells were fractionated from the liver tissues for mitochondria isolation, Western blotting and quantitative PCR analysis. Mitochondrial superoxide production was monitored by MitoSOX staining and flow cytometry analysis. Compared to control mice, the expression of UCP2 was significantly lower in NPCs, but not PCs of adiponectin knockout mice (AKO). Both chronic and acute treatment with adiponectin selectively increased the mRNA and protein abundance of UCP2 in NPCs, especially in the enriched endothelial cell fractions. The transcription inhibitor actinomycin D could not block adiponectin-induced UCP2 expression, whereas the protein synthesis inhibitor cycloheximide inhibited the elevation of UCP2 protein but not its mRNA levels. Mitochondrial content of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a nucleic acid binding protein involved in regulating mRNA transportation and stabilization, was significantly enhanced by adiponectin, which also evoked a transient elevation of mitochondrial superoxide. Rotenone, an inhibitor of mitochondrial respiratory complex I, abolished adiponectin-induced superoxide production, hnRNP K recruitment and UCP2 expression. Conclusions/Significance: Mitochondrial superoxide production stimulated by adiponectin serves as a trigger to initiate the translocation of hnRNP K, which in turn promotes UCP2 expressions in liver. © 2012 Zhou et al.published_or_final_versio

    Simple and More Efficient PRFs with Tight Security from LWE and Matrix-DDH

    Get PDF
    We construct efficient and tightly secure pseudorandom functions (PRFs) with only logarithmic security loss and short secret keys. This yields very simple and efficient variants of well-known constructions, including those of Naor-Reingold (FOCS 1997) and Lewko-Waters (ACM CCS 2009). Most importantly, in combination with the construction of Banerjee, Peikert and Rosen (EUROCRYPT 2012) we obtain the currently most efficient LWE-based PRF from a weak LWE-assumption with a much smaller modulus than the original construction. In comparison to the only previous construction with this property, which is due to Doettling and Schroeder (CRYPTO 2015), we use a modulus of similar size, but only a single instance of the underlying PRF, instead of λω(logλ)\lambda \cdot \omega(\log \lambda) parallel instances, where λ\lambda is the security parameter. Like Doettling and Schroeder, our security proof is only almost back-box, due to the fact that the number of queries made by the adversary and its advantage must be known a-priori. Technically, we introduce all-prefix universal hash functions (APUHFs), which are hash functions that are (almost-)universal, even if any prefix of the output is considered. We give simple and very efficient constructions of APUHFs, and show how they can be combined with the augmented cascade of Boneh et al. (ACM CCS 2010) to obtain our results. Along the way, we develop a new and more direct way to prove security of PRFs based on the augmented cascade
    corecore