268 research outputs found

    Quark Number Susceptibility with Finite Chemical Potential in Holographic QCD

    Full text link
    We study the quark number susceptibility in holographic QCD with a finite chemical potential or under an external magnetic field at finite temperature. We first consider the quark number susceptibility with the chemical potential. We observe that approaching the critical temperature from high temperature regime, the quark number susceptibility divided by temperature square develops a peak as we increase the chemical potential, which confirms recent lattice QCD results. We discuss this behavior in connection with the existence of the critical end point in the QCD phase diagram. We also consider the quark number susceptibility under the external magnetic field. We predict that the quark number susceptibility exhibits a blow-up behavior at low temperature as we raise the value of the magnetic field. We finally spell out some limitations of our study.Comment: 25 pages, 3 figures, published versio

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    Measurement of the Polarized Structure Function σLTâ€Č\sigma_{LT^\prime} for p(e⃗,eâ€Čp)πop(\vec{e},e'p)\pi^o in the Δ(1232)\Delta(1232) Resonance Region

    Full text link
    The polarized longitudinal-transverse structure function σLTâ€Č\sigma_{LT^\prime} has been measured in the Δ(1232)\Delta(1232) resonance region at Q2=0.40Q^2=0.40 and 0.65 GeV2^2. Data for the p(e⃗,eâ€Čp)πop(\vec e,e'p)\pi^o reaction were taken at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at an energy of 1.515 GeV. For the first time a complete angular distribution was measured, permitting the separation of different non-resonant amplitudes using a partial wave analysis. Comparison with previous beam asymmetry measurements at MAMI indicate a deviation from the predicted Q2Q^2 dependence of σLTâ€Č\sigma_{LT^{\prime}} using recent phenomenological models.Comment: 5 pages, LaTex, 4 eps figures: to be published in PRC/Rapid Communications. Version 2 has revised Q^2 analysi

    Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n

    Full text link
    We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic range. The kinetic energy distribution for `fast' nucleons (p > 250 MeV/c) peaks where two nucleons each have 20% or less, and the third nucleon has most of the transferred energy. These fast pp and pn pairs are back-to-back with little momentum along the three-momentum transfer, indicating that they are spectators. Experimental and theoretical evidence indicates that we have measured distorted two-nucleon momentum distributions by striking the third nucleon and detecting the spectator correlated pair.Comment: 6 pages, 5 figures, submitted to PR

    Exclusive ρ0\rho^0 electroproduction on the proton at CLAS

    Full text link
    The ep→eâ€Čpρ0e p\to e^\prime p \rho^0 reaction has been measured, using the 5.754 GeV electron beam of Jefferson Lab and the CLAS detector. This represents the largest ever set of data for this reaction in the valence region. Integrated and differential cross sections are presented. The WW, Q2Q^2 and tt dependences of the cross section are compared to theoretical calculations based on tt-channel meson-exchange Regge theory on the one hand and on quark handbag diagrams related to Generalized Parton Distributions (GPDs) on the other hand. The Regge approach can describe at the ≈\approx 30% level most of the features of the present data while the two GPD calculations that are presented in this article which succesfully reproduce the high energy data strongly underestimate the present data. The question is then raised whether this discrepancy originates from an incomplete or inexact way of modelling the GPDs or the associated hard scattering amplitude or whether the GPD formalism is simply inapplicable in this region due to higher-twists contributions, incalculable at present.Comment: 29 pages, 29 figure

    Survey of A_LT' asymmetries in semi-exclusive electron scattering on He4 and C12

    Full text link
    Single spin azimuthal asymmetries A_LT' were measured at Jefferson Lab using 2.2 and 4.4 GeV longitudinally polarized electrons incident on He4 and C12 targets in the CLAS detector. A_LT' is related to the imaginary part of the longitudinal-transverse interference and in quasifree nucleon knockout it provides an unambiguous signature for final state interactions (FSI). Experimental values of A_LT' were found to be below 5%, typically |A_LT'| < 3% for data with good statistical precision. Optical Model in Eikonal Approximation (OMEA) and Relativistic Multiple-Scattering Glauber Approximation (RMSGA) calculations are shown to be consistent with the measured asymmetries.Comment: 9 pages, 5 figure

    Onset of asymptotic scaling in deuteron photodisintegration

    Full text link
    We investigate the transition from the nucleon-meson to quark-gluon description of the strong interaction using the photon energy dependence of the d(γ,p)nd(\gamma,p)n differential cross section for photon energies above 0.5 GeV and center-of-mass proton angles between 30∘30^{\circ} and 150∘150^{\circ}. A possible signature for this transition is the onset of cross section s−11s^{-11} scaling with the total energy squared, ss, at some proton transverse momentum, PTP_T. The results show that the scaling has been reached for proton transverse momentum above about 1.1 GeV/c. This may indicate that the quark-gluon regime is reached above this momentum.Comment: Accepted by PRL; 5 pages, 2 figure

    Observation of Nuclear Scaling in the A(e,eâ€Č)A(e,e^{\prime}) Reaction at xB>x_B>1

    Full text link
    The ratios of inclusive electron scattering cross sections of 4^4He, 12^{12}C, and 56^{56}Fe to 3^3He have been measured for the first time. It is shown that these ratios are independent of xBx_B at Q2>^2>1.4 (GeV/c)2^2 for xB>x_B> 1.5 where the inclusive cross section depends primarily on the high-momentum components of the nuclear wave function. The observed scaling shows that the momentum distributions at high-momenta have the same shape for all nuclei and differ only by a scale factor. The observed onset of the scaling at Q2>^2>1.4 and xB>x_B >1.5 is consistent with the kinematical expectation that two nucleon short range correlations (SRC) are dominate the nuclear wave function at pm≳p_m\gtrsim 300 MeV/c. The values of these ratios in the scaling region can be related to the relative probabilities of SRC in nuclei with A≄\ge3. Our data demonstrate that for nuclei with A≄\geq12 these probabilities are 5-5.5 times larger than in deuterium, while for 4^4He it is larger by a factor of about 3.5.Comment: 11 pages, 10 figure

    Single pi+ Electroproduction on the Proton in the First and Second Resonance Regions at 0.25GeV^2 < Q^2 < 0.65GeV^2 Using CLAS

    Full text link
    The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.Comment: Accepted for publication in PR
    • 

    corecore