89 research outputs found
Towards a Processual Microbial Ontology
types: ArticleStandard microbial evolutionary ontology is organized according to a
nested hierarchy of entities at various levels of biological organization. It typically
detects and defines these entities in relation to the most stable aspects of evolutionary
processes, by identifying lineages evolving by a process of vertical inheritance
from an ancestral entity. However, recent advances in microbiology indicate
that such an ontology has important limitations. The various dynamics detected
within microbiological systems reveal that a focus on the most stable entities (or
features of entities) over time inevitably underestimates the extent and nature of
microbial diversity. These dynamics are not the outcome of the process of vertical
descent alone. Other processes, often involving causal interactions between entities
from distinct levels of biological organisation, or operating at different time scales,
are responsible not only for the destabilisation of pre-existing entities, but also for
the emergence and stabilisation of novel entities in the microbial world. In this
article we consider microbial entities as more or less stabilised functional wholes,
and sketch a network-based ontology that can represent a diverse set of processes
including, for example, as well as phylogenetic relations, interactions that stabilise
or destabilise the interacting entities, spatial relations, ecological connections, and
genetic exchanges. We use this pluralistic framework for evaluating (i) the existing
ontological assumptions in evolution (e.g. whether currently recognized entities are
adequate for understanding the causes of change and stabilisation in the microbial
world), and (ii) for identifying hidden ontological kinds, essentially invisible from
within a more limited perspective. We propose to recognize additional classes of
entities that provide new insights into the structure of the microbial world, namely ââprocessually equivalentââ entities, ââprocessually versatileââ entities, and ââstabilizedââ
entities.Economic and Social Research Council, U
Culture or Biology? If this sounds interesting, you might be confused
Culture or Biology? The question can seem deep and important. Yet, I argue in this chapter, if you are enthralled by questions about our biological differences, then you are probably confused. My goal is to diagnose the confusion. In debates about the role of biology in the social world it is easy to ask the wrong questions, and it is easy to misinterpret the scientific research. We are intuitively attracted to what is called psychological essentialism, and therefore interpret what is biological as what can be traced to âessencesâ. On this interpretation, it would be deep and important to know what about, say, the differences between the genders is biological: it would correspond to what is essential to being a man or being a woman, and be opposed to what is a mere accidental feature that some women or some men have. Yet, the psychological essentialist understanding of âbiological differencesâ is deeply mistaken about biology. It has the wrong conception of biological kinds, of biological heritability, and of how genes and hormones work. Those who argue for an important role of âbiologyâ in the explanation of human differences often see âthe scienceâ on their side. But this is false â on the interpretation of âbiological differencesâ that is most intuitive and that makes the question appear to be most interesting. Defenders of âbiologyâ often have the science against them. What is often called âbiologyâ is a myth: a myth created by an intuitive tendency that grotesquely distorts real biological research
The many faces of biological individuality
Biological individuality is a major topic of discussion in biology and philosophy of biology. Recently, several objections have been raised against traditional accounts of biological individuality, including the objections of monism (the tendency to focus on a single individuality criterion and/or a single biological field), theory-centrism (the tendency to discuss only theory-based individuation), ahistoricity (the tendency to neglect what biologists of the past and historians of biology have said about biological individuality), disciplinary isolationism (the tendency to isolate biological individuality from other scientific and philosophical domains that have investigated individuality), and the multiplication of conceptual uncertainties (the lack of a precise definition of âbiological individualâ and related terms). In this introduction, I will examine the current philosophical landscape about biological individuality, and show how the contributions gathered in this special issue address these five objections. Overall, the aim of this issue is to offer a more diverse, unifying, and scientifically informed conception of what a biological individual is
The ontology of organisms: Mechanistic modules or patterned processes?
Though the realm of biology has long been under the philosophical rule of the mechanistic magisterium, recent years have seen a surprisingly steady rise in the usurping prowess of process ontology. According to its proponents, theoretical advances in the contemporary science of evo-devo have afforded that ontology a particularly powerful claim to the throne: in that increasingly empirically confirmed discipline, emergently autonomous, higher-order entities are the reigning explanantia. If we are to accept the election of evo-devo as our best conceptualisation of the biological realm with metaphysical rigour, must we depose our mechanistic ontology for failing to properly âcarve at the jointsâ of organisms? In this paper, I challenge the legitimacy of that claim: not only can the theoretical benefits offered by a process ontology be had without it, they cannot be sufficiently grounded without the metaphysical underpinning of the very mechanisms which processes purport to replace. The biological realm, I argue, remains one best understood as under the governance of mechanistic principles
DSM-5 and Psychiatry's Second Revolution: Descriptive vs. Theoretical Approaches to Psychiatric Classification
A large part of the controversy surrounding the publication of DSM-5 stems from the possibility of replacing the purely descriptive approach to classification favored by the DSM since 1980. This paper examines the question of how mental disorders should be classified, focusing on the
issue of whether the DSM should adopt a purely descriptive or theoretical approach. I argue that the DSM should replace its purely descriptive approach with a theoretical approach that integrates causal information into the DSMâs descriptive diagnostic categories. The paper proceeds in three sections. In the first section, I examine the goals (viz., guiding treatment, facilitating research, and improving communication) associated with the DSMâs purely descriptive approach. In the second section, I suggest that the DSMâs purely descriptive approach is best suited for improving communication among mental health professionals; however, theoretical approaches would be superior for purposes of treatment and research. In the third section, I outline steps required to move the DSM towards a hybrid system of classification that can accommodate the benefits of descriptive and theoretical approaches, and I discuss how the DSMâs descriptive categories could be revised to incorporate theoretical information regarding the causes of disorders. I argue that the DSM should reconceive of its goals more narrowly such that it functions primarily as an epistemic hub that mediates among various contexts of use in which definitions of mental disorders appear. My analysis emphasizes the
importance of pluralism as a methodological means for avoiding theoretical dogmatism and ensuring that the DSM is a reflexive and self-correcting manual
Robustness and autonomy in biological systems: how regulatory mechanisms enable functional integration, complexity and minimal cognition through the action of second-order control constraints
Living systems employ several mechanisms and behaviors to achieve robustness and maintain themselves under changing internal and external conditions. Regulation stands out from them as a specific form of higher-order control, exerted over the basic regime responsible for the production and maintenance of the organism, and provides the system with the capacity to act on its own constitutive dynamics. It consists in the capability to selectively shift between different available regimes of self-production and self-maintenance in response to specific signals and perturbations, due to the action of a dedicated subsystem which is operationally distinct from the regulated ones. The role of regulation, however, is not exhausted by its contribution to maintain a living systemâs viability. While enhancing robustness, regulatory mechanisms play a fundamental role in the realization of an autonomous biological organization. Specifically, they are at the basis of the remarkable integration of biological systems, insofar as they coordinate and modulate the activity of distinct functional subsystems. Moreover, by implementing complex and hierarchically organized control architectures, they allow for an increase in structural and organizational complexity while minimizing fragility. Finally, they endow living systems, from their most basic unicellular instances, with the capability to control their own internal dynamics to adaptively respond to specific features of their interaction with the environment, thus providing the basis for the emergence of minimal forms of cognition
Holobionts and the ecology of organisms - Multi-species communities or integrated individuals?
It is now widely accepted that microorganisms play many important roles in the lives of plants and animals. Every macroorganism has been shaped in some way by microorganisms. The recognition of the ubiquity and importance of microorganisms has led some to argue for a revolution in how we understand biological individuality and the primary units of natural selection. The term âholobiontâ was introduced as a name for the biological unit made up by a host and all of its associated microorganisms, and much of this new debate about biological individuality has focused on whether holobionts are integrated individuals or communities. In this paper, I show how parts of the holobiont can span both characterizations. I argue that most holobionts share more affinities with communities than they do with organisms, and that, except for maybe in rare cases, holobionts do not meet the criteria for being organisms, evolutionary individuals, or units of selection
- âŠ