8 research outputs found

    Forcing ATGL expression in hepatocarcinoma cells imposes glycolytic rewiring through PPAR-α/p300-mediated acetylation of p53

    Get PDF
    Metabolic reprogramming is a typical feature of cancer cells aimed at sustaining high-energetic demand and proliferation rate. Here, we report clear-cut evidence for decreased expression of the adipose triglyceride lipase (ATGL), the first and rate-limiting enzyme of triglyceride hydrolysis, in both human and mouse-induced hepatocellular carcinoma (HCC). We identified metabolic rewiring as major outcome of ATGL overexpression in HCC-derived cell lines. Indeed, ATGL slackened both glucose uptake/utilization and cell proliferation in parallel with increased oxidative metabolism of fatty acids and enhanced mitochondria capacity. We ascribed these ATGL—downstream events to the activity of the tumor-suppressor p53, whose protein levels—but not transcript—were upregulated upon ATGL overexpression. The role of p53 was further assessed by abrogation of the ATGL-mediated effects upon p53 silencing or in p53-null hepatocarcinoma Hep3B cells. Furthermore, we provided insights on the molecular mechanisms governed by ATGL in HCC cells, identifying a new PPAR-α/p300 axis responsible for p53 acetylation/accumulation. Finally, we highlighted that ATGL levels confer different susceptibility of HCC cells to common therapeutic drugs, with ATGL overexpressing cells being more resistant to glycolysis inhibitors (e.g., 2-deoxyglucose and 3-bromopyruvate), compared to genotoxic compounds. Collectively, our data provide evidence for a previously uncovered tumor-suppressor function of ATGL in HCC, with the outlined molecular mechanisms shedding light on new potential targets for anticancer therapy

    Access to Mutualistic Endosymbiotic Microbes: An Underappreciated Benefit of Group Living

    No full text
    The original publication is available at www.springerlink.com A central question in behavioral ecology has been why animals live in groups. Previous theories about the evolution of sociality focused on the potential benefits of decreased risk of predation, increased foraging or feeding efficiency, and mutual aid in defending resources and/or rearing offspring. This paper argues that access to mutualistic endosymbiotic microbes is an underappreciated benefit of group living and sets out to reinvigorate Troyer’s hypothesis that the need to obtain cellulolytic microbes from conspecifics influenced the evolution of social behavior in herbivores and to extend it to nonherbivores. This extension is necessary because the benefits of endosymbionts are not limited to nutrition; endosymbionts also help protect their hosts from pathogens. When hosts must obtain endosymbionts from conspecifics, they are forced to interact. Thus, complex forms of sociality may be more likely to evolve when hosts must repeatedly obtain endosymbionts from conspecifics than when endosymbionts can be obtained either directly from the environment, are vertically transmitted, or when repeated inoculations are not necessary. Observations from a variety of taxa are consistent with the ideas that individuals benefit from group living by gaining access to endosymbionts and the complexity of social behavior is associated with the mode of acquisition of endosymbionts. Ways to test this theory include (a) experiments designed to examine the effects of endosymbionts on host fitness and how endosymbionts are obtained and (b) using phylogenetic analyses to examine endosymbiont-host coevolution with the goal of determining the relationship between the mode of endosymbiont acquisition and host sociality

    Action and Cephalic Expression: Hermeneutical Pragmatism

    No full text
    corecore