85 research outputs found

    Genetic Variants in FBN-1 and Risk for Thoracic Aortic Aneurysm and Dissection.

    Get PDF
    OBJECTIVES: A recent genome wide association study (GWAS) by LeMaire et al. found that two single nucleotide polymorphisms (SNPs), rs2118181 and rs10519177 in the FBN-1 gene (encoding Fibrillin-1), were associated with thoracic aortic dissection (TAD), non-dissecting thoracic aortic aneurysm (TAA), and thoracic aortic aneurysm or dissection (TAAD); the largest effect was observed for the association of rs2118181 with TAD. We investigated whether rs2118181 and rs10519177 were associated with TAD, TAA, and TAAD in the Yale study. METHODS: The genotypes of rs2118181 and rs10519177 were determined for participants in the Yale study: 637 TAAD cases (140 TAD, 497 TAA) and 275 controls from the United States, Hungary, and Greece. The association of the genotypes with TAD, TAA and TAAD were assessed using logistic regression models adjusted for sex, age, study center and hypertension. RESULTS AND CONCLUSIONS: In the Yale study, rs2118181 was associated with TAD: compared with non-carriers, carriers of the risk allele had an unadjusted odds ratio for TAD of 1.80 (95% CI 1.15-2.80) and they had odds ratio for TAD of 1.87 (95% CI 1.09-3.20) after adjusting for sex, age, study center and hypertension. We did not find significant differences in aortic size, a potential confounder for TAD, between rs2118181 risk variant carriers and non-carriers: mean aortic size was 5.56 (95% CI: 5.37-5.73) for risk variant carriers (CC+CT) and was 5.48 (95% CI: 5.36-5.61) for noncarriers (TT) (p = 0.56). rs2118181 was not associated with TAA or TAAD. rs10519177 was not associated with TAD, TAA, or TAAD in the Yale study. Thus, the Yale study provided further support for the association of the FBN-1 rs2118181SNP with TAD

    Algorithms for enhancing public health utility of national causes-of-death data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coverage and quality of cause-of-death (CoD) data varies across countries and time. Valid, reliable, and comparable assessments of trends in causes of death from even the best systems are limited by three problems: a) changes in the <it>International Statistical Classification of Diseases and Related Health Problems </it>(ICD) over time; b) the use of tabulation lists where substantial detail on causes of death is lost; and c) many deaths assigned to causes that cannot or should not be considered underlying causes of death, often called garbage codes (GCs). The Global Burden of Disease Study and the World Health Organization have developed various methods to enhance comparability of CoD data. In this study, we attempt to build on these approaches to enhance the utility of national cause-of-death data for public health analysis.</p> <p>Methods</p> <p>Based on careful consideration of 4,434 country-years of CoD data from 145 countries from 1901 to 2008, encompassing 743 million deaths in ICD versions 1 to 10 as well as country-specific cause lists, we have developed a public health-oriented cause-of-death list. These 56 causes are organized hierarchically and encompass all deaths. Each cause has been mapped from ICD-6 to ICD-10 and, where possible, they have also been mapped to the <it>International List of Causes of Death </it>1-5. We developed a typology of different classes of GCs. In each ICD revision, GCs have been identified. Target causes to which these GCs should be redistributed have been identified based on certification practice and/or pathophysiology. Proportionate redistribution, statistical models, and expert algorithms have been developed to redistribute GCs to target codes for each age-sex group.</p> <p>Results</p> <p>The fraction of all deaths assigned to GCs varies tremendously across countries and revisions of the ICD. In general, across all country-years of data available, GCs have declined from more than 43% in ICD-7 to 24% in ICD-10. In some regions, such as Australasia, GCs in 2005 are as low as 11%, while in some developing countries, such as Thailand, they are greater than 50%. Across different age groups, the composition of GCs varies tremendously - three classes of GCs steadily increase with age, but ambiguous codes within a particular disease chapter are also common for injuries at younger ages. The impact of redistribution is to change the number of deaths assigned to particular causes for a given age-sex group. These changes alter ranks across countries for any given year by a number of different causes, change time trends, and alter the rank order of causes within a country.</p> <p>Conclusions</p> <p>By mapping CoD through different ICD versions and redistributing GCs, we believe the public health utility of CoD data can be substantially enhanced, leading to an increased demand for higher quality CoD data from health sector decision-makers.</p

    Cardiovascular Magnetic Resonance in Marfan syndrome

    Full text link

    Hemoglobin level and macular thinning in sickle cell disease

    No full text
    S Amal Hussnain,1&ndash;4 Patrick A Coady,1,5 Martin D Slade,6 Judith Carbonella,7 Farzana Pashankar,7 Ron A Adelman,1 Kathleen M Stoessel11Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA; 2Department of Ophthalmology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; 3Vitreous Retina Macula Consultants of New York, New York, NY, USA; 4Department of Ophthalmology, New York University School of Medicine, New York, NY, USA; 5New England Retina Associates, Hamden, CT, USA; 6Department of Internal Medicine, Yale University School of Medicine and Yale School of Public Health, New Haven, CT, USA; 7Department of Pediatric Hematology and Oncology, Yale University School of Medicine, New Haven, CT, USAPurpose: To study the relationship between complete blood count (CBC) indices over time, particularly serum hemoglobin (Hb) levels, and severity of macular thinning on spectral domain optical coherence tomography (SD-OCT) in patients with sickle cell disease (SCD).Methods: This is a single-center, retrospective analysis of 141 consecutive SCD patients over a 10-year period, of which 40 patients (79 eyes) had SD-OCT imaging of the macula and 29 (58 eyes, mean age 17.5 years) were eligible for the study. Investigators reviewed electronic medical records for documentation of retinopathy stage, disease genotype, CBC values, and SD-OCT imaging. SD-OCT parameters and CBC values were compared between different retinopathy stages and disease genotypes. Regression analyses were performed on SD-OCT parameters and CBC values.Results: Of the 58 eligible eyes (34HbSS, 18HbSC, 4HbS&beta; +thal, 2HbS &beta;thal), 18 had PSR (proliferative sickle retinopathy), 14 had NPSR (nonproliferative sickle retinopathy), and 26 had NSR (no sickle retinopathy). Hb values were higher in SC group compared to SS group. Macular thickness in the temporal inner (&Delta;=26&plusmn;33 um, p=0.01) and outer (&Delta;=21&plusmn;30 um, p=0.02) subfields was higher in SC compared to SS group. Patients with SD-OCT thinning below the 5th percentile in the temporal outer subfields had lower recorded Hb nadirs (6.0&plusmn;0.9) compared to those with thickness within the top 95th percentile (9.1&plusmn;2.3). Regression analysis showed temporal macular thickness to be positively correlated with Hb values in the SS group.Conclusion: Macular thinning observed on SD-OCT in SCD patients with SS genotype may be related to the level of anemia in this population.Keywords: sickle cell retinopathy, macular thinning, spectraldomain optical coherence tomography, hemoglobi
    • …
    corecore