912 research outputs found

    The Sphaleron Rate in SU(N) Gauge Theory

    Full text link
    The sphaleron rate is defined as the diffusion constant for topological number NCS = int g^2 F Fdual/32 pi^2. It establishes the rate of equilibration of axial light quark number in QCD and is of interest both in electroweak baryogenesis and possibly in heavy ion collisions. We calculate the weak-coupling behavior of the SU(3) sphaleron rate, as well as making the most sensible extrapolation towards intermediate coupling which we can. We also study the behavior of the sphaleron rate at weak coupling at large Nc.Comment: 18 pages with 3 figure

    Consumer use of “Dr Google”: a survey on health information-seeking behaviors and navigational needs

    Get PDF
    BACKGROUND: The Internet provides a platform to access health information and support self-management by consumers with chronic health conditions. Despite recognized barriers to accessing Web-based health information, there is a lack of research quantitatively exploring whether consumers report difficulty finding desired health information on the Internet and whether these consumers would like assistance (ie, navigational needs). Understanding navigational needs can provide a basis for interventions guiding consumers to quality Web-based health resources. OBJECTIVE: We aimed to (1) estimate the proportion of consumers with navigational needs among seekers of Web-based health information with chronic health conditions, (2) describe Web-based health information-seeking behaviors, level of patient activation, and level of eHealth literacy among consumers with navigational needs, and (3) explore variables predicting navigational needs. METHODS: A questionnaire was developed based on findings from a qualitative study on Web-based health information-seeking behaviors and navigational needs. This questionnaire also incorporated the eHealth Literacy Scale (eHEALS; a measure of self-perceived eHealth literacy) and PAM-13 (a measure of patient activation). The target population was consumers of Web-based health information with chronic health conditions. We surveyed a sample of 400 Australian adults, with recruitment coordinated by Qualtrics. This sample size was required to estimate the proportion of consumers identified with navigational needs with a precision of 4.9% either side of the true population value, with 95% confidence. A subsample was invited to retake the survey after 2 weeks to assess the test-retest reliability of the eHEALS and PAM-13.RESULTS: Of 514 individuals who met our eligibility criteria, 400 (77.8%) completed the questionnaire and 43 participants completed the retest. Approximately half (51.3%; 95% CI 46.4-56.2) of the population was identified with navigational needs. Participants with navigational needs appeared to look for more types of health information on the Internet and from a greater variety of information sources compared to participants without navigational needs. However, participants with navigational needs were significantly less likely to have high levels of eHealth literacy (adjusted odds ratio=0.83, 95% CI 0.78-0.89, P<.001). Age was also a significant predictor (P=.02). CONCLUSIONS: Approximately half of the population of consumers of Web-based health information with chronic health conditions would benefit from support in finding health information on the Internet. Despite the popularity of the Internet as a source of health information, further work is recommended to maximize its potential as a tool to assist self-management in consumers with chronic health conditions

    Cooling of Dark-Matter Admixed Neutron Stars with density-dependent Equation of State

    Full text link
    We propose a dark-matter (DM) admixed density-dependent equation of state where the fermionic DM interacts with the nucleons via Higgs portal. Presence of DM can hardly influence the particle distribution inside neutron star (NS) but can significantly affect the structure as well as equation of state (EOS) of NS. Introduction of DM inside NS softens the equation of state. We explored the effect of variation of DM mass and DM Fermi momentum on the NS EOS. Moreover, DM-Higgs coupling is constrained using dark matter direct detection experiments. Then, we studied cooling of normal NSs using APR and DD2 EOSs and DM admixed NSs using dark-matter modified DD2 with varying DM mass and Fermi momentum. We have done our analysis by considering different NS masses. Also DM mass and DM Fermi momentum are varied for fixed NS mass and DM-Higgs coupling. We calculated the variations of luminosity and temperature of NS with time for all EOSs considered in our work and then compared our calculations with the observed astronomical cooling data of pulsars namely Cas A, RX J0822-43, 1E 1207-52, RX J0002+62, XMMU J17328, PSR B1706-44, Vela, PSR B2334+61, PSR B0656+14, Geminga, PSR B1055-52 and RX J0720.4-3125. It is found that APR EOS agrees well with the pulsar data for lighter and medium mass NSs but cooling is very fast for heavier NS. For DM admixed DD2 EOS, it is found that for all considered NS masses, all chosen DM masses and Fermi momenta agree well with the observational data of PSR B0656+14, Geminga, Vela, PSR B1706-44 and PSR B2334+61. Cooling becomes faster as compared to normal NSs in case of increasing DM mass and Fermi momenta. It is infered from the calculations that if low mass super cold NSs are observed in future that may support the fact that heavier WIMP can be present inside neutron stars.Comment: 24 Pages, 15 Figures and 2 Tables. Version accepted in The European Physical Journal

    Bulk Axions, Brane Back-reaction and Fluxes

    Full text link
    Extra-dimensional models can involve bulk pseudo-Goldstone bosons (pGBs) whose shift symmetry is explicitly broken only by physics localized on branes. Reliable calculation of their low-energy potential is often difficult because it requires details of the stabilization of the extra dimensions. In rugby ball solutions, for which two compact extra dimensions are stabilized in the presence of only positive-tension brane sources, the effects of brane back-reaction can be computed explicitly. This allows the calculation of the shape of the low-energy pGB potential and response of the extra dimensional geometry as a function of the perturbing brane properties. If the pGB-dependence is a small part of the total brane tension a very general analysis is possible, permitting an exploration of how the system responds to frustration when the two branes disagree on what the proper scalar vacuum should be. We show how the low-energy potential is given by the sum of brane tensions (in agreement with common lore) when only the brane tensions couple to the pGB. We also show how a direct brane coupling to the flux stabilizing the extra dimensions corrects this result in a way that does not simply amount to the contribution of the flux to the brane tensions. We calculate the mass of the would-be zero mode, and briefly describe several potential applications, including a brane realization of `natural inflation,' and a dynamical mechanism for suppressing the couplings of the pGB to matter localized on the branes. Since the scalar can be light enough to be relevant to precision tests of gravity (in a technically natural way) this mechanism can be relevant to evading phenomenological bounds.Comment: 36 pages, JHEP styl

    GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

    Full text link
    We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range. The Gamma-Ray Imaging, Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate γ\gamma-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. GRIPS will be a driver for the study of transient sources in the era of neutrino and gravitational wave observatories such as IceCUBE and LISA, establishing a new type of diagnostics in relativistic and nuclear astrophysics. This will support extrapolations to investigate star formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic Vision 2010; 25 p., 25 figs; see also www.grips-mission.e

    An integrated network visualization framework towards metabolic engineering applications

    Get PDF
    Background Over the last years, several methods for the phenotype simulation of microorganisms, under specified genetic and environmental conditions have been proposed, in the context of Metabolic Engineering (ME). These methods provided insight on the functioning of microbial metabolism and played a key role in the design of genetic modifications that can lead to strains of industrial interest. On the other hand, in the context of Systems Biology research, biological network visualization has reinforced its role as a core tool in understanding biological processes. However, it has been scarcely used to foster ME related methods, in spite of the acknowledged potential. Results In this work, an open-source software that aims to fill the gap between ME and metabolic network visualization is proposed, in the form of a plugin to the OptFlux ME platform. The framework is based on an abstract layer, where the network is represented as a bipartite graph containing minimal information about the underlying entities and their desired relative placement. The framework provides input/output support for networks specified in standard formats, such as XGMML, SBGN or SBML, providing a connection to genome-scale metabolic models. An user-interface makes it possible to edit, manipulate and query nodes in the network, providing tools to visualize diverse effects, including visual filters and aspect changing (e.g. colors, shapes and sizes). These tools are particularly interesting for ME, since they allow overlaying phenotype simulation results or elementary flux modes over the networks. Conclusions The framework and its source code are freely available, together with documentation and other resources, being illustrated with well documented case studies.This work is partially funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT (Portuguese Foundation for Science and Technology) within project ref. COMPETE FCOMP-01-0124-FEDER-015079 and the FCT Strategic Project PEst-OE/EQB/LA0023/2013. The work of PV is funded by PhD grant ref. SFRH/BDE/51442/2011

    The clinical potential of antiangiogenic fragments of extracellular matrix proteins

    Get PDF
    Neovasculature development is a crucial step in the natural history of a cancer. While much emphasis has been placed on proangiogenic growth factors such as VEGF, it is clear that endogenous angiogenesis inhibitors also have critical roles in the regulation of this process. Recent research has identified several cryptic fragments of extracellular matrix/vascular basement membrane proteins that have potent antiangiogenic properties in vivo. It has become apparent that many of these fragments signal via interactions with endothelial integrins, although multiple downstream effector pathways have been implicated and endostatin, the first non-collagenous domain of collagen XVIII, influences an intricate signalling network. The activity of these molecules in animal models suggests that they may have significant clinical activity; however, results of phase I/II trials with endostatin were disappointing. Many possible reasons can be found for the failure of these studies. Weaknesses in trial design, endostatin administration regimen and patient selection are identifiable, and importantly the lack of a clearly defined antiangiogenic mechanism for endostatin hindered assessment of biologically effective dose. Additionally, in vivo immunological and proteolytic function-neutralising mechanisms may have negated endostatin's actions. Lessons learned from these studies will aid the future clinical development of other antiangiogenic extracellular matrix protein fragments

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom
    corecore