20 research outputs found

    Dynamic modelling of electrooptically modulated vertical compound cavity surface emitting semiconductor lasers

    Get PDF
    A generalized rate equation model is used to simulate the interrelated amplitude and frequency modulation properties of Electrooptically Modulated Vertical Compound Cavity Surface Emitting Semiconductor Lasers in both large and small signal modulation regimes. It is shown that the photon lifetime in the modulator subcavity provides the ultimate limit for the 3 dB modulation cutoff frequency. It is shown that there is an optimum design (number of periods) of both the intermediate and top multistack reflectors to maximise the large-signal modulation quality

    Digital data transmission using electro-optically modulated vertical-cavity surface-emitting laser with saturable absorber

    No full text
    An electro-optically (EO) modulated oxide-confined vertical-cavity surface-emitting laser (VCSEL) containing a saturable absorber in the VCSEL cavity is studied. The device contains an EO modulator section that is resonant with the VCSEL cavity. A type-II EO superlattice medium is employed in the modulator section and shown to result in a strong negative EO effect in weak electric fields. Applying the reverse bias voltages to the EO section allows triggering of short pulses in the device. Digital data transmission (return-to-zero pseudo-random bit sequence, 27-1) at 10Gb/s at bit-error-rates well below 10-9 is demonstrated. © 2014 AIP Publishing LLC

    Understanding intermediate-band solar cells

    Get PDF
    The intermediate-band solar cell is designed to provide a large photogenerated current while maintaining a high output voltage. To make this possible, these cells incorporate an energy band that is partially filled with electrons within the forbidden bandgap of a semiconductor. Photons with insufficient energy to pump electrons from the valence band to the conduction band can use this intermediate band as a stepping stone to generate an electron–hole pair. Nanostructured materials and certain alloys have been employed in the practical implementation of intermediate-band solar cells, although challenges still remain for realizing practical devices. Here we offer our present understanding of intermediate-band solar cells, as well as a review of the different approaches pursed for their practical implementation. We also discuss how best to resolve the remaining technical issues
    corecore