159 research outputs found

    AHR2 Mutant Reveals Functional Diversity of Aryl Hydrocarbon Receptors in Zebrafish

    Get PDF
    The aryl hydrocarbon receptor (AHR) is well known for mediating the toxic effects of TCDD and has been a subject of intense research for over 30 years. Current investigations continue to uncover its endogenous and regulatory roles in a wide variety of cellular and molecular signaling processes. A zebrafish line with a mutation in ahr2 (ahr2hu3335), encoding the AHR paralogue responsible for mediating TCDD toxicity in zebrafish, was developed via Targeting Induced Local Lesions IN Genomes (TILLING) and predicted to express a non-functional AHR2 protein. We characterized AHR activity in the mutant line using TCDD and leflunomide as toxicological probes to investigate function, ligand binding and CYP1A induction patterns of paralogues AHR2, AHR1A and AHR1B. By evaluating TCDD-induced developmental toxicity, mRNA expression changes and CYP1A protein in the AHR2 mutant line, we determined that ahr2hu3335 zebrafish are functionally null. In silico modeling predicted differential binding of TCDD and leflunomide to the AHR paralogues. AHR1A is considered a non-functional pseudogene as it does not bind TCCD or mediate in vivo TCDD toxicity. Homology modeling, however, predicted a ligand binding conformation of AHR1A with leflunomide. AHR1A-dependent CYP1A immunohistochemical expression in the liver provided in vivo confirmation of the in silico docking studies. The ahr2hu3335 functional knockout line expands the experimental power of zebrafish to unravel the role of the AHR during development, as well as highlights potential activity of the other AHR paralogues in ligand-specific toxicological responses

    WNT signalling in prostate cancer

    Get PDF
    Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer

    Effect of Peer Health Workers on AIDS Care in Rakai, Uganda: A Cluster-Randomized Trial

    Get PDF
    Human resource limitations are a challenge to the delivery of antiretroviral therapy (ART) in low-resource settings. We conducted a cluster randomized trial to assess the effect of community-based peer health workers (PHW) on AIDS care of adults in Rakai, Uganda.15 AIDS clinics were randomized 2:1 to receive the PHW intervention (n = 10) or control (n = 5). PHW tasks included clinic and home-based provision of counseling, clinical, adherence to ART, and social support. Primary outcomes were adherence and cumulative risk of virologic failure (>400 copies/mL). Secondary outcomes were virologic failure at each 24 week time point up to 192 weeks of ART. Analysis was by intention to treat. From May 2006 to July 2008, 1336 patients were followed. 444 (33%) of these patients were already on ART at the start of the study. No significant differences were found in lack of adherence (<95% pill count adherence risk ratio [RR] 0.55, 95% confidence interval [CI] 0.23-1.35; <100% adherence RR 1.10, 95% CI 0.94-1.30), cumulative risk of virologic failure (RR 0.81, 95% CI 0.61-1.08) or in shorter-term virologic outcomes (24 week virologic failure RR 0.93, 95% CI 0.65-1.32; 48 week, RR 0.83, 95% CI 0.47-1.48; 72 week, RR 0.81, 95% CI 0.44-1.49). However, virologic failure rates >or=96 weeks into ART were significantly decreased in the intervention arm compared to the control arm (96 week failure RR 0.50, 95% CI 0.31-0.81; 120 week, RR 0.59, 95% CI 0.22-1.60; 144 week, RR 0.39, 95% CI 0.16-0.95; 168 week, RR 0.30, 95% CI 0.097-0.92; 192 week, RR 0.067, 95% CI 0.0065-0.71).A PHW intervention was associated with decreased virologic failure rates occurring 96 weeks and longer into ART, but did not affect cumulative risk of virologic failure, adherence measures, or shorter-term virologic outcomes. PHWs may be an effective intervention to sustain long-term ART in low-resource settings.ClinicalTrials.gov NCT00675389

    The role of the ubiquitination–proteasome pathway in breast cancer: Ubiquitin mediated degradation of growth factor receptors in the pathogenesis and treatment of cancer

    Get PDF
    Aberrant activity of growth factor receptors has been implicated in the pathogenesis of a wide variety of malignancies. The negative regulation of signaling by growth factor receptors is mediated in large part by the ubiquitination, internalization, and degradation of the activated receptor. Over the past few years, considerable insight into the mechanisms that control receptor downregulation has been gained. There are also data suggesting that mutations that lead to inhibition of downregulation of growth factor receptors could play a role in the pathogenesis of cancer. Therapies directed at enhancing the degradation of growth factor receptors offer a promising approach to the treatment of malignancies

    Monitoring Virologic Responses to Antiretroviral Therapy in HIV-Infected Adults in Kenya: Evaluation of a Low-Cost Viral Load Assay

    Get PDF
    A key advantage of monitoring HIV viral load (VL) in persons receiving antiretroviral therapy (ART) is the ability to detect virologic failure before clinical deterioration or resistance occurs. Detection of virologic failure will help clarify the need for enhanced adherence counseling or a change to second- line therapy. Low-cost, locally performable alternates to expensive VL assays are needed where resources are limited.We monitored the response to 48-week ART in 100 treatment-naïve Kenyan adults using a low-cost VL measurement, the Cavidi reverse transcriptase (RT) assay and gold-standard assays, Roche RNA PCR and Bayer Versant HIV-1 RNA (bDNA) assays. In Altman-Bland plots, the mean difference in viral loads between the three assays was small (<0.5 log(10) copies/mL). However, the limits of agreement between the methods exceeded the biologically relevant change of 0.5 log copies/ml. Therefore, the RT assay cannot be used interchangeably with the other assays to monitor individual patients. The RT assay was 100% sensitive in detecting viral loads of > or =400 copies/ml compared to gold-standard assays. After 24 weeks of treatment, viral load measured by the RT assay was undetectable in 95% of 65 patients with undetectable RNA PCR VL (<400 copies/ml), 90% of 67 patients with undetectable bDNA VL, and 96% of 57 patients with undetectable VL in both RNA PCR and bDNA assays. The negative predictive value of the RT assay was 100% compared to either assay; the positive predictive value was 86% compared to RNA PCR and 70% compared to bDNA.The RT assay compared well with gold standard assays. Our study highlights the importance of not interchanging viral load assays when monitoring an individual patient. Furthermore, the RT assay may be limited by low positive predictive values when used in populations with low prevalence of virologic failure

    Lipoteichoic Acid Induces Unique Inflammatory Responses when Compared to Other Toll-Like Receptor 2 Ligands

    Get PDF
    Toll-like receptors (TLRs) recognize evolutionarily-conserved molecular patterns originating from invading microbes. In this study, we were interested in determining if microbial ligands, which use distinct TLR2-containing receptor complexes, represent unique signals to the cell and can thereby stimulate unique cellular responses. Using the TLR2 ligands, R-FSL1, S-FSL1, Pam2CSK4, Pam3CSK4, and lipoteichoic acid (LTA), we demonstrate that these ligands activate NF-κB and MAP Kinase pathways with ligand-specific differential kinetics in murine macrophages. Most strikingly, LTA stimulation of these pathways was substantially delayed when compared with the other TLR2 ligands. These kinetics differences were associated with a delay in the LTA-induced expression of a subset of genes as compared with another TLR2 ligand, R-FSL1. However, this did not translate to overall differences in gene expression patterns four hours following stimulation with different TLR2 ligands. We extended this study to evaluate the in vivo responses to distinct TLR2 ligands using a murine model of acute inflammation, which employs intravital microscopy to monitor leukocyte recruitment into the cremaster muscle. We found that, although R-FSL1, S-FSL1, Pam2CSK4, and Pam3CSK4 were all able to stimulate robust leukocyte recruitment in vivo, LTA remained functionally inert in this in vivo model. Therefore distinct TLR2 ligands elicit unique cellular responses, as evidenced by differences in the kinetic profiles of signaling and gene expression responses in vitro, as well as the physiologically relevant differences in the in vivo responses to these ligands

    Type-1 Collagen differentially alters β-catenin accumulation in primary Dupuytren's Disease cord and adjacent palmar fascia cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dupuytren's Disease (DD) is a debilitating contractile fibrosis of the palmar fascia characterised by excess collagen deposition, contractile myofibroblast development, increased Transforming Growth Factor-β levels and β-catenin accumulation. The aim of this study was to determine if a collagen-enriched environment, similar to <it>in vivo </it>conditions, altered β-catenin accumulation by primary DD cells in the presence or absence of Transforming Growth Factor-β.</p> <p>Methods</p> <p>Primary DD and patient matched, phenotypically normal palmar fascia (PF) cells were cultured in the presence or absence of type-1 collagen and Transforming Growth Factor-β1. β-catenin and α-smooth muscle actin levels were assessed by western immunoblotting and immunofluorescence microscopy.</p> <p>Results</p> <p>DD cells display a rapid depletion of cellular β-catenin not evident in patient-matched PF cells. This effect was not evident in either cell type when cultured in the absence of type-1 collagen. Exogenous addition of Transforming Growth Factor-β1 to DD cells in collagen culture negates the loss of β-catenin accumulation. Transforming Growth Factor-β1-induced α-smooth muscle actin, a marker of myofibroblast differentiation, is attenuated by the inclusion of type-1 collagen in cultures of DD and PF cells.</p> <p>Conclusion</p> <p>Our findings implicate type-1 collagen as a previously unrecognized regulator of β-catenin accumulation and a modifier of TGF-β1 signaling specifically in primary DD cells. These data have implications for current treatment modalities as well as the design of <it>in vitro </it>models for research into the molecular mechanisms of DD.</p

    Proteolysis of proBDNF Is a Key Regulator in the Formation of Memory

    Get PDF
    It is essential to understand the molecular processes underlying long-term memory to provide therapeutic targets of aberrant memory that produce pathological behaviour in humans. Under conditions of recall, fully-consolidated memories can undergo reconsolidation or extinction. These retrieval-mediated memory processes may rely on distinct molecular processes. The cellular mechanisms initiating the signature molecular events are not known. Using infusions of protein synthesis inhibitors, antisense oligonucleotide targeting brain-derived neurotrophic factor (BDNF) mRNA or tPA-STOP (an inhibitor of the proteolysis of BDNF protein) into the hippocampus of the awake rat, we show that acquisition and extinction of contextual fear memory depended on the increased and decreased proteolysis of proBDNF (precursor BDNF) in the hippocampus, respectively. Conditions of retrieval that are known to initiate the reconsolidation of contextual fear memory, a BDNF-independent memory process, were not correlated with altered proBDNF cleavage. Thus, the processing of BDNF was associated with the acquisition of new information and the updating of information about a salient stimulus. Furthermore, the differential requirement for the processing of proBDNF by tPA in distinct memory processes suggest that the molecular events actively engaged to support the storage and/or the successful retrieval of memory depends on the integration of ongoing experience with past learning

    Antagonism of Host Antiviral Responses by Kaposi's Sarcoma-Associated Herpesvirus Tegument Protein ORF45

    Get PDF
    Virus infection of a cell generally evokes an immune response by the host to defeat the intruder in its effort. Many viruses have developed an array of strategies to evade or antagonize host antiviral responses. Kaposi's sarcoma-associated herpesvirus (KSHV) is demonstrated in this report to be able to prevent activation of host antiviral defense mechanisms upon infection. Cells infected with wild-type KSHV were permissive for superinfection with vesicular stomatitis virus (VSV), suggesting that KSHV virions fail to induce host antiviral responses. We previously showed that ORF45, a KSHV immediate-early protein as well as a tegument protein of virions, interacts with IRF-7 and inhibits virus-mediated type I interferon induction by blocking IRF-7 phosphorylation and nuclear translocation (Zhu et al., Proc. Natl. Acad. Sci. USA. 99:5573-5578, 2002). Here, using an ORF45-null recombinant virus, we demonstrate a profound role of ORF45 in inhibiting host antiviral responses. Infection of cells with an ORF45-null mutant recombinant KSHV (BAC-stop45) triggered an immune response that resisted VSV super-infection, concomitantly associated with appreciable increases in transcription of type I IFN and downstream anti-viral effector genes. Gain-of-function analysis showed that ectopic expression of ORF45 in human fibroblast cells by a lentivirus vector decreased the antiviral responses of the cells. shRNA-mediated silencing of IRF-7, that predominantly regulates both the early and late phase induction of type I IFNs, clearly indicated its critical contribution to the innate antiviral responses generated against incoming KSHV particles. Thus ORF45 through its targeting of the crucial IRF-7 regulated type I IFN antiviral responses significantly contributes to the KSHV survival immediately following a primary infection allowing for progression onto subsequent stages in its life-cycle

    The Anti-interferon Activity of Conserved Viral dUTPase ORF54 is Essential for an Effective MHV-68 Infection

    Get PDF
    Gammaherpesviruses such as KSHV and EBV establish lifelong persistent infections through latency in lymphocytes. These viruses have evolved several strategies to counteract the various components of the innate and adaptive immune systems. We conducted an unbiased screen using the genetically and biologically related virus, MHV-68, to find viral ORFs involved in the inhibition of type I interferon signaling and identified a conserved viral dUTPase, ORF54. Here we define the contribution of ORF54 in type I interferon inhibition by ectopic expression and through the use of genetically modified MHV-68. ORF54 and an ORF54 lacking dUTPase enzymatic activity efficiently inhibit type I interferon signaling by inducing the degradation of the type I interferon receptor protein IFNAR1. Subsequently, we show in vitro that the lack of ORF54 causes a reduction in lytic replication in the presence of type I interferon signaling. Investigation of the physiological consequence of IFNAR1 degradation and importance of ORF54 during MHV-68 in vivo infection demonstrates that ORF54 has an even greater impact on persistent infection than on lytic replication. MHV-68 lacking ORF54 expression is unable to efficiently establish latent infection in lymphocytes, although it replicates relatively normally in lung tissues. However, infection of IFNAR−/− mice alleviates this phenotype, emphasizing the specific role of ORF54 in type I interferon inhibition. Infection of mice and cells by a recombinant MHV-68 virus harboring a site specific mutation in ORF54 rendering the dUTPase inactive demonstrates that dUTPase enzymatic activity is not required for anti-interferon function of ORF54. Moreover, we find that dUTPase activity is dispensable at all stages of MHV-68 infection analyzed. Overall, our data suggest that ORF54 has evolved anti-interferon activity in addition to its dUTPase enzymatic activity, and that it is actually the anti-interferon role that renders ORF54 critical for establishing an effective persistent infection of MHV-68
    • …
    corecore