178 research outputs found

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1

    Get PDF
    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag−/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.National Institutes of Health (U.S.) (NIH grant R01-CA075576)National Institutes of Health (U.S.) (NIH grant R01-CA055042)National Institutes of Health (U.S.) (NIH grant R01-CA149261)National Institutes of Health (U.S.) (NIH grant P30-ES00002)National Institutes of Health (U.S.) (NIH grant P30-ES02109)National Center for Research Resources (U.S.) (grant number M01RR-01066)National Center for Research Resources (U.S.) (grant number UL1 RR025758, Harvard Clinical and Translational Science Center

    Diagnostic, prognostic and predictive value of cell-free miRNAs in prostate cancer : A systematic review

    Get PDF
    Publisher Copyright: © 2016 Endzeliņš et al.Prostate cancer, the second most frequently diagnosed cancer in males worldwide, is estimated to be diagnosed in 1.1 million men per year. Introduction of PSA testing substantially improved early detection of prostate cancer, however it also led to overdiagnosis and subsequent overtreatment of patients with an indolent disease. Treatment outcome and management of prostate cancer could be improved by the development of non-invasive biomarker assays that aid in increasing the sensitivity and specificity of prostate cancer screening, help to distinguish aggressive from indolent disease and guide therapeutic decisions. Prostate cancer cells release miRNAs into the bloodstream, where they exist incorporated into ribonucleoprotein complexes or extracellular vesicles. Later, cell-free miRNAs have been found in various other biofluids. The initial RNA sequencing studies suggested that most of the circulating cell-free miRNAs in healthy individuals are derived from blood cells, while specific disease-associated miRNA signatures may appear in the circulation of patients affected with various diseases, including cancer. This raised a hope that cell-free miRNAs may serve as non-invasive biomarkers for prostate cancer. Indeed, a number of cell-free miRNAs that potentially may serve as diagnostic, prognostic or predictive biomarkers have been discovered in blood or other biofluids of prostate cancer patients and need to be validated in appropriately designed longitudinal studies and clinical trials. In this review, we systematically summarise studies investigating cell-free miRNAs in biofluids of prostate cancer patients and discuss the utility of the identified biomarkers in various clinical scenarios. Furthermore, we discuss the possible mechanisms of miRNA release into biofluids and outline the biological questions and technical challenges that have arisen from these studies.publishersversionPeer reviewe

    Manufacture Techniques of Chitosan-Based Microcapsules to Enhance Functional Properties of Textiles

    Get PDF
    In recent years, the textile industry has been moving to novel concepts of products, which could deliver to the user, improved performances. Such smart textiles have been proven to have the potential to integrate within a commodity garment advanced feature and functional properties of different kinds. Among those functionalities, considerable interest has been played in functionalizing commodity garments in order to make them positively interact with the human body and therefore being beneficial to the user health. This kind of functionalization generally exploits biopolymers, a class of materials that possess peculiar properties such as biocompatibility and biodegradability that make them suitable for bio-functional textile production. In the context of biopolymer chitosan has been proved to be an excellent potential candidate for this kind of application given its abundant availability and its chemical properties that it positively interacts with biological tissue. Notwithstanding the high potential of chitosan-based technologies in the textile sectors, several issues limit the large-scale production of such innovative garments. In facts the morphologies of chitosan structures should be optimized in order to make them better exploit the biological activity; moreover a suitable process for the application of chitosan structures to the textile must be designed. The application process should indeed not only allow an effective and durable fixation of chitosan to textile but also comply with environmental rules concerning pollution emission and utilization of harmful substances. This chapter reviews the use of microencapsulation technique as an approach to effectively apply chitosan to the textile material while overcoming the significant limitations of finishing processes. The assembly of chitosan macromolecules into microcapsules was proved to boost the biological properties of the polymer thanks to a considerable increase in the surface area available for interactions with the living tissues. Moreover, the incorporation of different active substances into chitosan shells allows the design of multifunctional materials that effectively combine core and shell properties. Based on the kind of substances to be incorporated, several encapsulation processes have been developed. The literature evidences how the proper choices concerning encapsulation technology, chemical formulations, and process parameter allow tuning the properties and the performances of the obtained microcapsules. Furthermore, the microcapsules based finishing process have been reviewed evidencing how the microcapsules morphology can positively interact with textile substrate allowing an improvement in the durability of the treatment. The application of the chitosan shelled microcapsules was proved to be capable of imparting different functionalities to textile substrates opening possibilities for a new generation of garments with improved performances and with the potential of protecting the user from multiple harms. Lastly, a continuous interest was observed in improving the process and formulation design in order to avoid the usage of toxic substances, therefore, complying with an environmentally friendly approach

    Nanocomposites: synthesis, structure, properties and new application opportunities

    Full text link
    corecore