12,331 research outputs found
Theoretical analysis for the apparent discrepancy between pbarp and pp data in charged particle forward-backward multiplicity correlations
The strength of charged particle forward-backward multiplicity correlation in
pbar+p and p+p collisions at s^1/2 = 200 GeV is studied by PYTHIA 6.4 and
compared to the UA5 and STAR data correspondingly. It is turned out that a
factor of 3-4 apparent discrepancy between UA5 and STAR data can be attributed
to the differences in detector acceptances and observing bin interval in both
experiments. A mixed event method is introduced and used to calculate the
statistical correlation strength and the dynamical correlation strengths
stemming from the charge conservation, four- momentum conservation, and decay,
respectively. It seems that the statistical correlation is much larger than
dynamical one and the charge conservation, four-momentum conservation and decay
may account for most part of the dynamical correlation. In addition, we have
also calculated the correlation strength by fitting the charged particle
multiplicity distribution from PYTHIA to the Negative Binomial Distribution and
found that the result agrees well with the correlation strength calculated by
mixed events.Comment: 5 pages, 4 figure
Energy and system size dependence of charged particle elliptic flow and v_2/\eps scaling
We report measurements of charged particle elliptic flow %() at
mid-rapidity in Au+Au and Cu+Cu collisions at and 200
GeV. Using correlations between main STAR TPC and Forward TPCs ensures minimal
bias due to non-flow effects. We further investigate the effect of flow
fluctuations on v_2/\eps scaling studying initial geometry eccentricity
fluctuations in Monte-Carlo Glauber model, consistent with STAR direct
measurements of elliptic flow fluctuations. It is found that accounting for the
effect of flow fluctuations improves v_2/\eps scaling.Comment: 4 pages, Quark Matter 2006 proceeding
Shear Modes, Criticality and Extremal Black Holes
We consider a (2+1)-dimensional field theory, assumed to be holographically
dual to the extremal Reissner-Nordstrom AdS(4) black hole background, and
calculate the retarded correlators of charge (vector) current and
energy-momentum (tensor) operators at finite momentum and frequency. We show
that, similar to what was observed previously for the correlators of scalar and
spinor operators, these correlators exhibit emergent scaling behavior at low
frequency. We numerically compute the electromagnetic and gravitational
quasinormal frequencies (in the shear channel) of the extremal
Reissner-Nordstrom AdS(4) black hole corresponding to the spectrum of poles in
the retarded correlators. The picture that emerges is quite simple: there is a
branch cut along the negative imaginary frequency axis, and a series of
isolated poles corresponding to damped excitations. All of these poles are
always in the lower half complex frequency plane, indicating stability. We show
that this analytic structure can be understood as the proper limit of finite
temperature results as T is taken to zero holding the chemical potential fixed.Comment: 28 pages, 7 figures, added reference
The QGP phase in relativistic heavy-ion collisions
The dynamics of partons, hadrons and strings in relativistic nucleus-nucleus
collisions is analyzed within the novel Parton-Hadron-String Dynamics (PHSD)
transport approach, which is based on a dynamical quasiparticle model for
partons (DQPM) matched to reproduce recent lattice-QCD results - including the
partonic equation of state - in thermodynamic equilibrium. The transition from
partonic to hadronic degrees of freedom is described by covariant transition
rates for the fusion of quark-antiquark pairs or three quarks (antiquarks),
respectively, obeying flavor current-conservation, color neutrality as well as
energy-momentum conservation. The PHSD approach is applied to nucleus-nucleus
collisions from low SIS to RHIC energies. The traces of partonic interactions
are found in particular in the elliptic flow of hadrons as well as in their
transverse mass spectra.Comment: To be published by Springer in Proceedings of the International
Symposium on `Exciting Physics', Makutsi-Range, South Africa, 13-20 November,
201
TEMPRANILLO is a regulator of juvenility in plants
Many plants are incapable of flowering in inductive daylengths during the early juvenile vegetative phase (JVP). Arabidopsis mutants with reduced expression of TEMPRANILLO (TEM), a repressor of FLOWERING LOCUS T (FT) had a shorter JVP than wild-type plants. Reciprocal changes in mRNA expression of TEM and FT were observed in both Arabidopsis and antirrhinum, which correlated with the length of the JVP. FT expression was induced just prior to the end of the JVP and levels of TEM1 mRNA declined rapidly at the time when FT mRNA levels were shown to increase. TEM orthologs were isolated from antirrhinum (AmTEM) and olive (OeTEM) and were expressed most highly during their juvenile phase. AmTEM functionally complemented AtTEM1 in the tem1 mutant and over-expression of AmTEM prolonged the JVP through repression of FT and CONSTANS (CO). We propose that TEM may have a general role in regulating JVP in herbaceous and woody species
The particle number in Galilean holography
Recently, gravity duals for certain Galilean-invariant conformal field
theories have been constructed. In this paper, we point out that the spectrum
of the particle number operator in the examples found so far is not a necessary
consequence of the existence of a gravity dual. We record some progress towards
more realistic spectra. In particular, we construct bulk systems with
asymptotic Schrodinger symmetry and only one extra dimension. In examples, we
find solutions which describe these Schrodinger-symmetric systems at finite
density. A lift to M-theory is used to resolve a curvature singularity. As a
happy byproduct of this analysis, we realize a state which could be called a
holographic Mott insulator.Comment: 29 pages, 1 rudimentary figure; v2: typo in eqn (3.4), added comments
and ref
The QCD Coupling Constant
This paper presents a summary of the current status of determinations of the
strong coupling constant alpha_s. A detailed description of the definition,
scale dependence and inherent theoretical ambiguities is given. The various
physical processes that can be used to determine alpha_s are reviewed and
attention is given to the uncertainties, both theoretical and experimental.Comment: 56 page
Quantum critical lines in holographic phases with (un)broken symmetry
All possible scaling IR asymptotics in homogeneous, translation invariant
holographic phases preserving or breaking a U(1) symmetry in the IR are
classified. Scale invariant geometries where the scalar extremizes its
effective potential are distinguished from hyperscaling violating geometries
where the scalar runs logarithmically. It is shown that the general critical
saddle-point solutions are characterized by three critical exponents (). Both exact solutions as well as leading behaviors are exhibited.
Using them, neutral or charged geometries realizing both fractionalized or
cohesive phases are found. The generic global IR picture emerging is that of
quantum critical lines, separated by quantum critical points which correspond
to the scale invariant solutions with a constant scalar.Comment: v3: 32+29 pages, 2 figures. Matches version published in JHEP.
Important addition of an exponent characterizing the IR scaling of the
electric potentia
Fermions and Type IIB Supergravity On Squashed Sasaki-Einstein Manifolds
We discuss the dimensional reduction of fermionic modes in a recently found
class of consistent truncations of type IIB supergravity compactified on
squashed five-dimensional Sasaki-Einstein manifolds. We derive the lower
dimensional equations of motion and effective action, and comment on the
supersymmetry of the resulting theory, which is consistent with N=4 gauged
supergravity in , coupled to two vector multiplets. We compute fermion
masses by linearizing around two vacua of the theory: one that breaks
N=4 down to N=2 spontaneously, and a second one which preserves no
supersymmetries. The truncations under consideration are noteworthy in that
they retain massive modes which are charged under a U(1) subgroup of the
-symmetry, a feature that makes them interesting for applications to
condensed matter phenomena via gauge/gravity duality. In this light, as an
application of our general results we exhibit the coupling of the fermions to
the type IIB holographic superconductor, and find a consistent further
truncation of the fermion sector that retains a single spin-1/2 mode.Comment: 43 pages, 2 figures, PDFLaTeX; v2: added references, typos corrected,
minor change
Schr\"odinger Holography with and without Hyperscaling Violation
We study the properties of the Schr\"odinger-type non-relativistic holography
for general dynamical exponent z with and without hyperscaling violation
exponent \theta. The scalar correlation function has a more general form due to
general z as well as the presence of \theta, whose effects also modify the
scaling dimension of the scalar operator. We propose a prescription for minimal
surfaces of this "codimension 2 holography," and demonstrate the (d-1)
dimensional area law for the entanglement entropy from (d+3) dimensional
Schr\"odinger backgrounds. Surprisingly, the area law is violated for d+1 < z <
d+2, even without hyperscaling violation, which interpolates between the
logarithmic violation and extensive volume dependence of entanglement entropy.
Similar violations are also found in the presence of the hyperscaling
violation. Their dual field theories are expected to have novel phases for the
parameter range, including Fermi surface. We also analyze string theory
embeddings using non-relativistic branes.Comment: 62 pages and 6 figures, v2: several typos in section 5 corrected,
references added, v3: typos corrected, references added, published versio
- …
