223 research outputs found

    Search for Invisible Decays of η\eta and η′\eta^\prime in J/ψ→ϕηJ/\psi \to \phi\eta and ϕη′\phi \eta^\prime

    Full text link
    Using a data sample of 58×10658\times 10^6 J/ψJ/\psi decays collected with the BES II detector at the BEPC, searches for invisible decays of η\eta and η′\eta^\prime in J/ψJ/\psi to ϕη\phi\eta and ϕη′\phi\eta^\prime are performed. The ϕ\phi signals, which are reconstructed in K+K−K^+K^- final states, are used to tag the η\eta and η′\eta^\prime decays. No signals are found for the invisible decays of either η\eta or η′\eta^\prime, and upper limits at the 90% confidence level are determined to be 1.65×10−31.65 \times 10^{-3} for the ratio B(η→invisible)B(η→γγ)\frac{B(\eta\to \text{invisible})}{B(\eta\to\gamma\gamma)} and 6.69×10−26.69\times 10^{-2} for B(η′→invisible)B(η′→γγ)\frac{B(\eta^\prime\to \text{invisible})}{B(\eta^\prime\to\gamma\gamma)}. These are the first searches for η\eta and η′\eta^\prime decays into invisible final states.Comment: 5 pages, 4 figures; Added references, Corrected typo

    Haploinsufficiency of SIRT1 Enhances Glutamine Metabolism and Promotes Cancer Development

    Get PDF
    SIRT1, the most conserved mammalian NAD+-dependent protein deacetylase, plays a vital role in the regulation of metabolism, stress responses, and genome stability. However, the role of SIRT1 in the multi-step process leading to transformation and/or tumorigenesis, as either a tumor suppressor or tumor promoter, is complex and maybe dependent upon the context in which SIRT1 activity is altered, and the role of SIRT1 in tumor metabolism is unknown. Here we demonstrate that SIRT1 dose-dependently regulates cellular glutamine metabolism and apoptosis, which in turn differentially impact cell proliferation and cancer development. Heterozygous deletion of Sirt1 induces c-Myc expression, enhancing glutamine metabolism and subsequent proliferation, autophagy, stress resistance and cancer formation. In contrast, homozygous deletion of Sirt1 triggers cellular apoptotic pathways, increases cell death, diminishes autophagy, and reduces cancer formation. Consistent with the observed dose-dependence in cells, intestine-specific Sirt1 heterozygous mice have enhanced intestinal tumor formation, whereas intestine-specific Sirt1 homozygous knockout mice have reduced development of colon cancer. Furthermore, SIRT1 reduction but not deletion is associated with human colorectal tumors, and colorectal cancer patients with low protein expression of SIRT1 have a poor prognosis. Taken together, our findings indicate that the dose-dependent regulation of tumor metabolism and possibly apoptosis by SIRT1 mechanistically contributes to the observed dual roles of SIRT1 in tumorigenesis. Our study highlights the importance of maintenance of a suitable SIRT1 dosage for metabolic and tissue homeostasis, which will have important implications in SIRT1 small molecule activators/inhibitors based therapeutic strategies for cancers

    Measurements of the observed cross sections for e+e−→e^+e^-\to exclusive light hadrons containing π0π0\pi^0\pi^0 at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV

    Full text link
    By analyzing the data sets of 17.3, 6.5 and 1.0 pb−1^{-1} taken, respectively, at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for e+e−→π+π−π0π0e^+e^-\to \pi^+\pi^-\pi^0\pi^0, K+K−π0π0K^+K^-\pi^0\pi^0, 2(π+π−π0)2(\pi^+\pi^-\pi^0), K+K−π+π−π0π0K^+K^-\pi^+\pi^-\pi^0\pi^0 and 3(π+π−)π0π03(\pi^+\pi^-)\pi^0\pi^0 at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay into these final states at 90% C.L..Comment: 7 pages, 2 figure

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8×107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/ψ→γϕϕ→γK+K−KS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0−+0^{-+} state (η(2225)\eta(2225)) with a mass of 2.24−0.02+0.03−0.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19±0.03−0.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/ψ→γη(2225))⋅Br(η(2225)→ϕϕ)=(4.4±0.4±0.8)×10−4Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pb−1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0→μ+X)=(6.8±1.5±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+→μ+X)=(17.6±2.7±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+→μ+X)BF(D0→μ+X)=2.59±0.70±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25

    Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV

    Full text link
    By analyzing the data sets of 17.3 pb−1^{-1} taken at s=3.773\sqrt{s}=3.773 GeV and 6.5 pb−1^{-1} taken at s=3.650\sqrt{s}=3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in e+e−e^+e^- annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay to these final states at 90% C.L.Comment: 8 pages, 5 figur

    Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-

    Full text link
    We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi --> D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7 J/Psi events collected with the BESII detector at the BEPC. No excess of signal above background is observed, and 90% confidence level upper limits on the branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi --> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure

    Measurements of psi(2S) decays to octet baryon-antibaryon pairs

    Get PDF
    With a sample of 14 million psi(2S) events collected by the BESII detector at the Beijing Electron Positron Collider (BEPC), the decay channels psi(2S)->p p-bar, Lambda Lambda-bar, Sigma0 Sigma0-bar, Xi Xi-bar are measured, and their branching ratios are determined to be (3.36+-0.09+-0.24)*10E-4, (3.39+-0.20+-0.32)*10E-4, (2.35+-0.36+-0.32)*10E-4, (3.03+-0.40+-0.32)*10E-4, respectively. In the decay psi(2S)->p p-bar, the angular distribution parameter alpha is determined to be 0.82+-0.17+-0.04.Comment: 8 pages, 8 figure

    A study of charged kappa in J/ψ→K±Ksπ∓π0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0

    Full text link
    Based on 58×10658 \times 10^6 J/ψJ/\psi events collected by BESII, the decay J/ψ→K±Ksπ∓π0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0 is studied. In the invariant mass spectrum recoiling against the charged K∗(892)±K^*(892)^{\pm}, the charged κ\kappa particle is found as a low mass enhancement. If a Breit-Wigner function of constant width is used to parameterize the kappa, its pole locates at (849±77−14+18)−i(256±40−22+46)(849 \pm 77 ^{+18}_{-14}) -i (256 \pm 40 ^{+46}_{-22}) MeV/c2c^2. Also in this channel, the decay J/ψ→K∗(892)+K∗(892)−J/\psi \to K^*(892)^+ K^*(892)^- is observed for the first time. Its branching ratio is (1.00±0.19−0.32+0.11)×10−3(1.00 \pm 0.19 ^{+0.11}_{-0.32}) \times 10^{-3}.Comment: 14 pages, 4 figure

    Direct Measurements of the Branching Fractions for D0→K−e+νeD^0 \to K^-e^+\nu_e and D0→π−e+νeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0→K−e+νeD^0 \to K^-e ^+\nu_e and D0→π−e+νeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0→K−e+νeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0→π−e+νeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0→K−e+νe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0→π−e+νe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be ∣f+K(0)∣=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and ∣f+π(0)∣=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be ∣f+π(0)/f+K(0)∣=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure
    • …
    corecore