7 research outputs found

    Analogous intruder behavior near Ni, Sn, and Pb isotopes

    Get PDF
    Near shell closures, the presence of unexpected states at low energies provides a critical test of our understanding of the atomic nucleus. New measurements for the N=42 isotones Co2769 and Cu2971, along with recent data and calculations in the Ni isotopes, establish a full set of complementary, deformed, intruder states astride the closed-shell Ni28 isotopes. Nuclei with a one-proton hole or one-proton particle adjacent to Z=28 were populated in β-decay experiments and in multinucleon transfer reactions. A β-decaying isomer, with a 750(250)-ms half-life, has been identified in Co422769. It likely has low spin and accompanies the previously established 7/2- state. Complementary data for the levels of isotonic Cu422971 support the presence of a deformed, ΔJ=1 band built on the proton intruder 7/2- level at 981 keV. These data, together with recent studies of lower-mass Co and Cu isotopes and extensive work near Ni68, support the view that intruder states based on particle-hole excitations accompany all closed proton shells with Z≥28

    New Half-lives of r-process Zn and Ga Isotopes Measured with Electromagnetic Separation

    Get PDF
    The β decays of neutron-rich nuclei near the doubly magic Ni78 were studied at the Holifield Radioactive Ion Beam Facility using an electromagnetic isobar separator. The half-lives of Zn82 (228±10ms), Zn83 (117±20ms), and Ga85 (93±7ms) were determined for the first time. These half-lives were found to be very different from the predictions of the global model used in astrophysical simulations. A new calculation was developed using the density functional model, which properly reproduced the new experimental values. The robustness of the new model in the Ni78 region allowed us to extrapolate data for more neutron-rich isotopes. The revised analysis of the rapid neutron capture process in low entropy environments with our new set of measured and calculated half-lives shows a significant redistribution of predicted isobaric abundances strengthening the yield of A\u3e140 nuclei. © 2012 American Physical Society

    First Results from the Modular Total Absorption Spectrometer at the HRIBF

    No full text
    A Modular Total Absorption Spectrometer (MTAS) has been recently constructed and commissioned at the Holifield Radioactive Ion Beam Facility (HRIBF) at the Oak Ridge National Laboratory (ORNL). The main goal of MTAS is to determine the true beta-decay feeding and following gamma radiation pattern for the decays of fission products. In this contribution, we would like to present the results of the measurement of 86Br. The preliminary analysis yields an average energy of emitted γ-radiation of about 4110 keV. It represents an increase of over 26% (850 keV), when compared to the average EM energies deduced using the ENSDF database

    Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    No full text
    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom GEANT4 simulation models aspects of the detector array and the experimental setups to determine efficiency and detector response. A low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV

    References

    No full text
    corecore