4 research outputs found

    Validation of a new technique to detect Cryptosporidium spp. oocysts in bovine feces

    No full text
    Due to its important zoonotic potential, cryptosporidiosis arouses strong interest in the scientific community, because, it was initially considered a rare and opportunistic disease. The parasitological diagnosis of the causative agent of this disease, the protozoan Cryptosporidium spp., requires the use of specific techniques of concentration and permanent staining, which are laborious and costly, and are difficult to use in routine laboratory tests. In view of the above, we conducted the feasibility, development, evaluation and intralaboratory validation of a new parasitological technique for analysis in optical microscopy of Cryptosporidium spp. oocysts, called TF-Test Coccidia, using fecal samples from calves from the city of Araçatuba, São Paulo. To confirm the aforementioned parasite and prove the diagnostic efficiency of the new technique, we used two established methodologies in the scientific literature: parasite concentration by centrifugal sedimentation and negative staining with malachite green (CSN-Malachite) and Nested-PCR. We observed good effectiveness of the TF-Test Coccidia technique, being statistically equivalent to CSN-Malachite. Thus, we verified the effectiveness of the TF-Test Coccidia parasitological technique for the detection of Cryptosporidium spp. oocysts and observed good concentration and morphology of the parasite, with a low amount of debris in the fecal smear.13415COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informação99/06228-

    Validation Of A New Technique To Detect Cryptosporidium Spp. Oocysts In Bovine Feces

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Due to its important zoonotic potential, cryptosporidiosis arouses strong interest in the scientific community, because, it was initially considered a rare and opportunistic disease. The parasitological diagnosis of the causative agent of this disease, the protozoan Cryptosporidium spp., requires the use of specific techniques of concentration and permanent staining, which are laborious and costly, and are difficult to use in routine laboratory tests. In view of the above, we conducted the feasibility, development, evaluation and intralaboratory validation of a new parasitological technique for analysis in optical microscopy of Cryptosporidium spp. oocysts, called TF-Test Coccidia, using fecal samples from calves from the city of Araçatuba, São Paulo. To confirm the aforementioned parasite and prove the diagnostic efficiency of the new technique, we used two established methodologies in the scientific literature: parasite concentration by centrifugal sedimentation and negative staining with malachite green (CSN-Malachite) and Nested-PCR. We observed good effectiveness of the TF-Test Coccidia technique, being statistically equivalent to CSN-Malachite. Thus, we verified the effectiveness of the TF-Test Coccidia parasitological technique for the detection of Cryptosporidium spp. oocysts and observed good concentration and morphology of the parasite, with a low amount of debris in the fecal smear. © 2016 Elsevier B.V.13415#99/06228-4, FAPESP, São Paulo Research FoundationFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore