393 research outputs found

    Design and Setup of the Micro-Turboexpander Transcritical CO2 System

    Get PDF
    As the potential Eco-friendly refrigerant, CO2 regains more and more attentions. It has various advantages over conventional refrigerants, such as non-flammability, non-toxicity, high volumetric refrigerant capacity and excellent heat transfer properties. Because the heat rejection temperature in a transcritical CO2 heat pump or a transcritical CO2 refrigeration system is higher than the critical temperature of CO2, the transcritical vapor compression cycle becomes the best choice for transcritical CO2 systems. However, the relative low COP caused by the throttle valve limited the further development. The replacement of a throttle valve with a turboexpander, an ejector or a vortex tube is leading to the way for improving the COP of a transcritical CO2 system. With the advantages of high efficiency, high compactness, high reliability and long-life time, turboexpanders have been widely used in gas lique faction devices (below 120K) and most of the reverse Brayton refrigeration systems. It is also one of the most ideal expansion devices for transcritical CO2 systems. However, its applications are limited by the difficulties of high pressure and super high rotating speed operation. With the development of manufacturing technology and gas bearing technology, it becomes possible to use turboexpanders in transcriticalCO2 systems. In this paper, two turboexpanders with 10 mm radial reaction turbine wheel and 9 mm rotor diameter were designed for the 15 kW transcritical CO2 refrigeration system, and the rotating speed is about 200 krpm.The proposed turboexpanders outlet states are CO2 two-phase flow and subcooled CO2 liquid flow, respectively. This study will lay a foundation for the application of turboexpanders in transcritical CO2 systems

    The K\"ahler-Ricci flow on surfaces of positive Kodaira dimension

    Full text link
    The existence of K\"ahler-Einstein metrics on a compact K\"ahler manifold has been the subject of intensive study over the last few decades, following Yau's solution to Calabi's conjecture. The Ricci flow, introduced by Richard Hamilton has become one of the most powerful tools in geometric analysis. We study the K\"ahler-Ricci flow on minimal surfaces of Kodaira dimension one and show that the flow collapses and converges to a unique canonical metric on its canonical model. Such a canonical is a generalized K\"ahler-Einstein metric. Combining the results of Cao, Tsuji, Tian and Zhang, we give a metric classification for K\"aher surfaces with a numerical effective canonical line bundle by the K\"ahler-Ricci flow. In general, we propose a program of finding canonical metrics on canonical models of projective varieties of positive Kodaira dimension

    Local properties of extended self-similarity in 3D turbulence

    Full text link
    Using a generalization of extended self-similarity we have studied local scaling properties of 3D turbulence in a direct numerical simulation. We have found that these properties are consistent with lognormal-like behavior of energy dissipation fluctuations with moderate amplitudes for space scales rr beginning from Kolmogorov length η\eta up to the largest scales, and in the whole range of the Reynolds numbers: 50Rλ45950 \leq R_{\lambda} \leq 459. The locally determined intermittency exponent μ(r)\mu(r) varies with rr; it has a maximum at scale r=14ηr=14 \eta, independent of RλR_{\lambda}.Comment: 4 pages, 5 figure

    The SUSY seesaw model and lepton-flavor violation at a future electron-positron linear collider

    Full text link
    We study lepton-flavor violating slepton production and decay at a future e^+e^- linear collider in context with the seesaw mechanism in mSUGRA post-LEP benchmark scenarios. The present knowledge in the neutrino sector as well as improved future measurements are taken into account. We calculate the signal cross-sections \sigma(e^{+/-}e^- -> l_{\beta}^{+/-} l_{\alpha}^- \tilde{\chi}_b^0 \tilde{\chi}_a^0); l_{\delta}=e, \mu, \tau; \alpha =|= \beta and estimate the main background processes. Furthermore, we investigate the correlations of these signals with the corresponding lepton-flavor violating rare decays l_{\alpha} -> l_{\beta} \gamma. It is shown that these correlations are relatively weakly affected by uncertainties in the neutrino data, but very sensitive to the model parameters. Hence, they are particularly suited for probing the origin of lepton-flavor violation.Comment: 31 pages, 10 figures, version published in Phys. Rev.

    Pseudogap formation of four-layer BaRuO3_3 and its electrodynamic response changes

    Full text link
    We investiaged the optical properties of four-layer BaRuO3_{3}, which shows a fermi-liquid-like behavior at low temperature. Its optical conductivity spectra clearly displayed the formation of a pseudogap and the development of a coherent peak with decreasing temperature. Temperature-dependences of the density nn and the scattering rate 1/τ1/\tau of the coherent component were also derived. As the temperature decreases, both nn and 1/τ1/\tau decrease for four-layer BaRuO3_{3}. These electrodynamic responses were compared with those of nine-layer BaRuO3_{3}, which also shows a pseudogap formation but has an insulator-like state at low temperature. It was found that the relative rates of change of both nn and 1/τ1/\tau determine either metallic or insulator-like responses in the ruthenates. The optical properties of the four-layer ruthenate were also compared with those of other pseudogap systems, such as high TcT_{c} cuprates and heavy electron systems.Comment: 7 figures. submitted to Phys. Rev.

    Dynamics of earthquake nucleation process represented by the Burridge-Knopoff model

    Full text link
    Dynamics of earthquake nucleation process is studied on the basis of the one-dimensional Burridge-Knopoff (BK) model obeying the rate- and state-dependent friction (RSF) law. We investigate the properties of the model at each stage of the nucleation process, including the quasi-static initial phase, the unstable acceleration phase and the high-speed rupture phase or a mainshock. Two kinds of nucleation lengths L_sc and L_c are identified and investigated. The nucleation length L_sc and the initial phase exist only for a weak frictional instability regime, while the nucleation length L_c and the acceleration phase exist for both weak and strong instability regimes. Both L_sc and L_c are found to be determined by the model parameters, the frictional weakening parameter and the elastic stiffness parameter, hardly dependent on the size of an ensuing mainshock. The sliding velocity is extremely slow in the initial phase up to L_sc, of order the pulling speed of the plate, while it reaches a detectable level at a certain stage of the acceleration phase. The continuum limits of the results are discussed. The continuum limit of the BK model lies in the weak frictional instability regime so that a mature homogeneous fault under the RSF law always accompanies the quasi-static nucleation process. Duration times of each stage of the nucleation process are examined. The relation to the elastic continuum model and implications to real seismicity are discussed.Comment: Title changed. Changes mainly in abstract and in section 1. To appear in European Physical Journal

    Nonlinear wave transmission and pressure on the fixed truncated breakwater using NURBS numerical wave tank

    Full text link
    Fully nonlinear wave interaction with a fixed breakwater is investigated in a numerical wave tank (NWT). The potential theory and high-order boundary element method are used to solve the boundary value problem. Time domain simulation by a mixed Eulerian-Lagrangian (MEL) formulation and high-order boundary integral method based on non uniform rational B-spline (NURBS) formulation is employed to solve the equations. At each time step, Laplace equation is solved in Eulerian frame and fully non-linear free-surface conditions are updated in Lagrangian manner through material node approach and fourth order Runge-Kutta time integration scheme. Incident wave is fed by specifying the normal flux of appropriate wave potential on the fixed inflow boundary. To ensure the open water condition and to reduce the reflected wave energy into the computational domain, two damping zones are provided on both ends of the numerical wave tank. The convergence and stability of the presented numerical procedure are examined and compared with the analytical solutions. Wave reflection and transmission of nonlinear waves with different steepness are investigated. Also, the calculation of wave load on the breakwater is evaluated by first and second order time derivatives of the potential
    corecore