1,137 research outputs found

    Energy States of Colored Particle in a Chromomagnetic Field

    Get PDF
    The unitary transformation, which diagonalizes squared Dirac equation in a constant chromomagnetic field is found. Applying this transformation, we find the eigenfunctions of diagonalized Hamiltonian, that describe the states with definite value of energy and call them energy states. It is pointed out that, the energy states are determined by the color interaction term of the particle with the background chromofield and this term is responsible for the splitting of the energy spectrum. We construct supercharge operators for the diagonal Hamiltonian, that ensure the superpartner property of the energy states.Comment: 25 pages, some calculation details have been removed, typos correcte

    Improved results for N=(2,2) super Yang-Mills theory using supersymmetric discrete light-cone quantization

    Full text link
    We consider the (1+1)-dimensional N=(2,2){\cal N}=(2,2) super Yang--Mills theory which is obtained by dimensionally reducing N=1{\cal N}=1 super Yang--Mills theory in four dimension to two dimensions. We do our calculations in the large-NcN_c approximation using Supersymmetric Discrete Light Cone Quantization. The objective is to calculate quantities that might be investigated by researchers using other numerical methods. We present a precision study of the low-mass spectrum and the stress-energy correlator . We find that the mass gap of this theory closes as the numerical resolution goes to infinity and that the correlator in the intermediate rr region behaves like r4.75r^{-4.75}.Comment: 18 pages, 8 figure

    Early-stage assessment of minor metal recyclability

    Get PDF
    Horizon 2020(H2020)821114Industrial Ecolog

    A note on the extensivity of the holographic entanglement entropy

    Full text link
    We consider situations where the renormalized geometric entropy, as defined by the AdS/CFT ansatz of Ryu and Takayanagi, shows extensive behavior in the volume of the entangled region. In general, any holographic geometry that is `capped' in the infrared region is a candidate for extensivity provided the growth of minimal surfaces saturates at the capping region, and the induced metric at the `cap' is non-degenerate. Extensivity is well-known to occur for highly thermalized states. In this note, we show that the holographic ansatz predicts the persistence of the extensivity down to vanishing temperature, for the particular case of conformal field theories in 2+1 dimensions with a magnetic field and/or electric charge condensates.Comment: 12 pages and 2 figures; one reference added; Significant additions to section 3, involving new results and a more pedagogical presentatio
    corecore