1,265 research outputs found

    Soft end-point and mass corrections to the eta' g*g* vertex function

    Full text link
    Power-suppressed corrections arising from end-point integration regions to the space-like vertex function of the massive eta'-meson virtual gluon transition eta' - g*g* are computed. Calculations are performed within the standard hard-scattering approach (HSA) and the running coupling method supplemented by the infrared renormalon calculus. Contributions to the vertex function from the quark and gluon contents of the eta' -meson are taken into account and the Borel resummed expressions for F_{eta' g*g*}(Q2,\omega ,\eta), as well as for F_{eta' g g*}}(Q^{2},\omega =\pm 1,\eta) and F_{eta' g*g*}(Q^{2},\omega =0,\eta) are obtained. It is demonstrated that the power-suppressed corrections \sim (\Lambda ^{2}/Q^{2})^{n}, in the explored range of the total gluon virtuality 1 <Q2 < 25 GeV2, considerably enhance the vertex function relative to the results found in the framework of the standard HSA with a fixed coupling. Modifications generated by the eta ' -meson mass effects are discussed

    Effect of multiple transverse modes in self-mixing sensors based on vertical-cavity surface-emitting lasers

    Get PDF
    We investigate the effect of coexisting transverse modes on the operation of self-mixing sensors based on vertical-cavity surface-emitting lasers (VCSELs). The effect of multiple transverse modes on the measurement of displacement and distance were examined by simulation and in laboratory experiment. The simulation model shows that the periodic change in the shape and magnitude of the self-mixing signal with modulation current can be properly explained by the different frequency-modulation coefficients of the respective transverse modes in VCSELs. The simulation results are in excellent agreement with measurements performed on single-mode and multimode VCSELs and on self-mixing sensors based on these VCSELs

    High-temperature oxidation of nickel-based alloys and estimation of the adhesion strength of resulting oxide layers

    Get PDF
    The kinetics of isothermal oxidation (1100°C) of commercial nickel-based alloys with different content of sulfur (0.22–3.2 wt ppm) is studied. The adhesion strength in a metal/oxide system is estimated as a function of sulfur content and duration of high-temperature exposure. The scratch-test technique is proposed to quantitatively estimate the work of adhesion of resulting oxide films. It is found that the film microstructure is composed of an inner α-Al2O3 layer and an outer NiAl2O4 spinel layer, which are separated by discrete inclusions of TiO2. Residual stresses in the oxide film are experimentally determined by X-ray diffraction. spinel layer, which are separated by discrete inclusions of TiO2. Residual stresses in the oxide film are experimentally determined by X-ray diffractio

    On moduli and effective theory of N=1 warped flux compactifications

    Full text link
    The moduli space of N=1 type II warped compactions to flat space with generic internal fluxes is studied. Using the underlying integrable generalized complex structure that characterizes these vacua, the different deformations are classified by H-twisted generalized cohomologies and identified with chiral and linear multiplets of the effective four-dimensional theory. The Kaehler potential for chiral fields corresponding to classically flat moduli is discussed. As an application of the general results, type IIB warped Calabi-Yau compactifications and other SU(3)-structure subcases are considered in more detail.Comment: 54 pages; v3: comments and references added, version published in JHE

    Glueball spectrum based on a rigorous three-dimensional relativistic equation for two-gluon bound states I: Derivation of the relativistic equation

    Full text link
    A rigorous three-dimensional relativistic equation satisfied by two-gluon bound states is derived from the QCD with massive gluons. With the gluon fields and the quark fields being expanded in terms of the gluon multipole fields and the spherical Dirac spinors respectively, the equation is well established in the angular momentum representation and hence is much convenient for solving the problem of two-gluon glueball spectra. In particular, the interaction kernel in the equation is exactly derived and given a closed expression which includes all the interactions taking place in the two-gluon glueballs. The kernel contains only a few types of Green's functions and commutators. Therefore, it is not only easily calculated by the perturbation method, but also provides a suitable basis for nonperturbative investigations

    Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV

    Full text link
    By analyzing the data sets of 17.3 pb1^{-1} taken at s=3.773\sqrt{s}=3.773 GeV and 6.5 pb1^{-1} taken at s=3.650\sqrt{s}=3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in e+ee^+e^- annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay to these final states at 90% C.L.Comment: 8 pages, 5 figur

    Measurements of psi(2S) decays to octet baryon-antibaryon pairs

    Get PDF
    With a sample of 14 million psi(2S) events collected by the BESII detector at the Beijing Electron Positron Collider (BEPC), the decay channels psi(2S)->p p-bar, Lambda Lambda-bar, Sigma0 Sigma0-bar, Xi Xi-bar are measured, and their branching ratios are determined to be (3.36+-0.09+-0.24)*10E-4, (3.39+-0.20+-0.32)*10E-4, (2.35+-0.36+-0.32)*10E-4, (3.03+-0.40+-0.32)*10E-4, respectively. In the decay psi(2S)->p p-bar, the angular distribution parameter alpha is determined to be 0.82+-0.17+-0.04.Comment: 8 pages, 8 figure

    Measurements of the observed cross sections for e+ee^+e^-\to exclusive light hadrons containing π0π0\pi^0\pi^0 at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV

    Full text link
    By analyzing the data sets of 17.3, 6.5 and 1.0 pb1^{-1} taken, respectively, at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for e+eπ+ππ0π0e^+e^-\to \pi^+\pi^-\pi^0\pi^0, K+Kπ0π0K^+K^-\pi^0\pi^0, 2(π+ππ0)2(\pi^+\pi^-\pi^0), K+Kπ+ππ0π0K^+K^-\pi^+\pi^-\pi^0\pi^0 and 3(π+π)π0π03(\pi^+\pi^-)\pi^0\pi^0 at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay into these final states at 90% C.L..Comment: 7 pages, 2 figure

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8×107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/ψγϕϕγK+KKS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0+0^{-+} state (η(2225)\eta(2225)) with a mass of 2.240.02+0.030.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19±0.030.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/ψγη(2225))Br(η(2225)ϕϕ)=(4.4±0.4±0.8)×104Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pb1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0μ+X)=(6.8±1.5±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+μ+X)=(17.6±2.7±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+μ+X)BF(D0μ+X)=2.59±0.70±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25
    corecore