1,108 research outputs found

    The Constraint on FCNC Coupling of the Top Quark with a Gluon from ep Collisions

    Full text link
    Using the constraint on the single top production cross-section obtained at the HERA collider, σ(epetX)\sigma(ep \to e t X), we evaluate an upper limit on oupling constant of the anomalous top quark interaction with a gluon via flavor-changing neutral current: κtgq/Λ0.4TeV1|\kappa_{tgq}/\Lambda| \le 0.4 {TeV}^{-1}, BR(tgq)<13(t \to gq) < 13 % Comment: Latex, 3 figures, missed references were adde

    Ictal quantitative surface electromyography correlates with postictal EEG suppression.

    Get PDF
    To test the hypothesis that neurophysiologic biomarkers of muscle activation during convulsive seizures reveal seizure severity and to determine whether automatically computed surface EMG parameters during seizures can predict postictal generalized EEG suppression (PGES), indicating increased risk for sudden unexpected death in epilepsy. Wearable EMG devices have been clinically validated for automated detection of generalized tonic-clonic seizures. Our goal was to use quantitative EMG measurements for seizure characterization and risk assessment. Quantitative parameters were computed from surface EMGs recorded during convulsive seizures from deltoid and brachial biceps muscles in patients admitted to long-term video-EEG monitoring. Parameters evaluated were the durations of the seizure phases (tonic, clonic), durations of the clonic bursts and silent periods, and the dynamics of their evolution (slope). We compared them with the duration of the PGES. We found significant correlations between quantitative surface EMG parameters and the duration of PGES (p &lt; 0.001). Stepwise multiple regression analysis identified as independent predictors in deltoid muscle the duration of the clonic phase and in biceps muscle the duration of the tonic-clonic phases, the average silent period, and the slopes of the silent period and clonic bursts. The surface EMG-based algorithm identified seizures at increased risk (PGES ≥20 seconds) with an accuracy of 85%. Ictal quantitative surface EMG parameters correlate with PGES and may identify seizures at high risk. This study provides Class II evidence that during convulsive seizures, surface EMG parameters are associated with prolonged postictal generalized EEG suppression

    High Magnetic Field ESR in the Haldane Spin Chains NENP and NINO

    Full text link
    We present electron spin resonance experiments in the one-dimensional antiferromagnetic S=1 spin chains NENP and NINO in pulsed magnetic fields up to 50T. The measured field dependence of the quantum energy gap for B||b is analyzed using the exact diagonalization method and the density matrix renormalization group method (DMRG). A staggered anisotropy term (-1)^i d(S_i^x S_i^z + S_i^z S_i^x) was considered for the first time in addition to a staggered field term (-1)^i S_i^x B_st. We show that the spin dynamics in high magnetic fields strongly depends on the orthorhombic anisotropy E.Comment: 4 pages, RevTeX, 4 figure

    Tensor network states and geometry

    Full text link
    Tensor network states are used to approximate ground states of local Hamiltonians on a lattice in D spatial dimensions. Different types of tensor network states can be seen to generate different geometries. Matrix product states (MPS) in D=1 dimensions, as well as projected entangled pair states (PEPS) in D>1 dimensions, reproduce the D-dimensional physical geometry of the lattice model; in contrast, the multi-scale entanglement renormalization ansatz (MERA) generates a (D+1)-dimensional holographic geometry. Here we focus on homogeneous tensor networks, where all the tensors in the network are copies of the same tensor, and argue that certain structural properties of the resulting many-body states are preconditioned by the geometry of the tensor network and are therefore largely independent of the choice of variational parameters. Indeed, the asymptotic decay of correlations in homogeneous MPS and MERA for D=1 systems is seen to be determined by the structure of geodesics in the physical and holographic geometries, respectively; whereas the asymptotic scaling of entanglement entropy is seen to always obey a simple boundary law -- that is, again in the relevant geometry. This geometrical interpretation offers a simple and unifying framework to understand the structural properties of, and helps clarify the relation between, different tensor network states. In addition, it has recently motivated the branching MERA, a generalization of the MERA capable of reproducing violations of the entropic boundary law in D>1 dimensions.Comment: 18 pages, 18 figure

    Laser cooling of a trapped two-component Fermi gas

    Full text link
    The collective Raman cooling of a trapped two-component Fermi gas is analyzed. We develop the quantum master equation that describes the collisions and the laser cooling, in the festina lente regime, where the heating due to photon reabsorption can be neglected. The numerical results based on Monte Carlo simulations show, that three-dimensional temperatures of the order of 0.008 T_F can be achieved. We analyze the heating related to the background losses, and conclude that our laser-cooling scheme can maintain the temperature of the gas without significant additional losses. Finally we derive an analytic expression for the temperature of a trapped Fermi gas heated by background collisions, that agrees very well with the data obtained from the numerical simulation.Comment: 5 pages, 3 figure

    Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials

    Full text link
    The vibrational density of states (VDOS) of nanoclusters and nanocrystalline materials are derived from molecular-dynamics simulations using empirical tight-binding potentials. The results show that the VDOS inside nanoclusters can be understood as that of the corresponding bulk system compressed by the capillary pressure. At the surface of the nanoparticles the VDOS exhibits a strong enhancement at low energies and shows structures similar to that found near flat crystalline surfaces. For the nanocrystalline materials an increased VDOS is found at high and low phonon energies, in agreement with experimental findings. The individual VDOS contributions from the grain centers, grain boundaries, and internal surfaces show that, in the nanocrystalline materials, the VDOS enhancements are mainly caused by the grain-boundary contributions and that surface atoms play only a minor role. Although capillary pressures are also present inside the grains of nanocrystalline materials, their effect on the VDOS is different than in the cluster case which is probably due to the inter-grain coupling of the modes via the grain-boundaries.Comment: 10 pages, 7 figures, accepted for publication in Phys. Rev.

    Molecular dynamics study of melting of a bcc metal-vanadium II : thermodynamic melting

    Full text link
    We present molecular dynamics simulations of the thermodynamic melting transition of a bcc metal, vanadium using the Finnis-Sinclair potential. We studied the structural, transport and energetic properties of slabs made of 27 atomic layers with a free surface. We investigated premelting phenomena at the low-index surfaces of vanadium; V(111), V(001), and V(011), finding that as the temperature increases, the V(111) surface disorders first, then the V(100) surface, while the V(110) surface remains stable up to the melting temperature. Also, as the temperature increases, the disorder spreads from the surface layer into the bulk, establishing a thin quasiliquid film in the surface region. We conclude that the hierarchy of premelting phenomena is inversely proportional to the surface atomic density, being most pronounced for the V(111) surface which has the lowest surface density
    corecore