19 research outputs found

    The Structure of TGBC_C Phases

    Full text link
    We study the transition from the cholesteric phase to two TGBC_C phases near the upper critical twist kc2k_{c2}: the Renn-Lubensky TGBC_C phase, with layer normal rotating in a plane perpendicular to the pitch axis, and the Bordeaux TGBC_C phase, with the layer normal rotating on a cone parallel to the pitch axis. We calculate properties, including order-parameter profiles, of both phases.Comment: 4 pages, 4 figures, Submitted to Physical Review E, Rapid Communications, September 5, 2003; Revised manuscript (to the paper submitted on March 18, 2003, cond-mat/0303365)that includes an important missing reference and presents an improved analysis of a generalized mode

    Pascal Principle for Diffusion-Controlled Trapping Reactions

    Full text link
    "All misfortune of man comes from the fact that he does not stay peacefully in his room", has once asserted Blaise Pascal. In the present paper we evoke this statement as the "Pascal principle" in regard to the problem of survival of an "A" particle, which performs a lattice random walk in presence of a concentration of randomly moving traps "B", and gets annihilated upon encounters with any of them. We prove here that at sufficiently large times for both perfect and imperfect trapping reactions, for arbitrary spatial dimension "d" and for a rather general class of random walks, the "A" particle survival probability is less than or equal to the survival probability of an immobile target in the presence of randomly moving traps.Comment: 4 pages, RevTex, appearing in PR

    Electromagnetic characteristics of bilayer quantum Hall systems in the presence of interlayer coherence and tunneling

    Full text link
    The electromagnetic characteristics of bilayer quantum Hall systems in the presence of interlayer coherence and tunneling are studied by means of a pseudospin-texture effective theory and an algebraic framework of the single-mode approximation, with emphasis on clarifying the nature of the low-lying neutral collective mode responsible for interlayer tunneling phenomena. A long-wavelength effective theory, consisting of the collective mode as well as the cyclotron modes, is constructed. It is seen explicitly from the electromagnetic response that gauge invariance is kept exact, this implying, in particular, the absence of the Meissner effect in bilayer systems. Special emphasis is placed on exploring the advantage of looking into quantum Hall systems through their response; in particular, subtleties inherent to the standard Chern-Simons theories are critically examined.Comment: 9 pages, Revtex, to appear in Phys. Rev.

    Nondissipative Drag Conductance as a Topological Quantum Number

    Full text link
    We show in this paper that the boundary condition averaged nondissipative drag conductance of two coupled mesoscopic rings with no tunneling, evaluated in a particular many-particle eigenstate, is a topological invariant characterized by a Chern integer. Physical implications of this observation are discussed.Comment: 4 pages, no figure. Title modified and significant revision made to the text. Final version appeared in PR

    Phase Behavior of Bent-Core Molecules

    Full text link
    Recently, a new class of smectic liquid crystal phases (SmCP phases) characterized by the spontaneous formation of macroscopic chiral domains from achiral bent-core molecules has been discovered. We have carried out Monte Carlo simulations of a minimal hard spherocylinder dimer model to investigate the role of excluded volume interations in determining the phase behavior of bent-core materials and to probe the molecular origins of polar and chiral symmetry breaking. We present the phase diagram as a function of pressure or density and dimer opening angle ψ\psi. With decreasing ψ\psi, a transition from a nonpolar to a polar smectic phase is observed near ψ=167\psi = 167^{\circ}, and the nematic phase becomes thermodynamically unstable for ψ<135\psi < 135^{\circ}. No chiral smectic or biaxial nematic phases were found.Comment: 4 pages Revtex, 3 eps figures (included

    Lattice theory of trapping reactions with mobile species

    Full text link
    We present a stochastic lattice theory describing the kinetic behavior of trapping reactions A+BBA + B \to B, in which both the AA and BB particles perform an independent stochastic motion on a regular hypercubic lattice. Upon an encounter of an AA particle with any of the BB particles, AA is annihilated with a finite probability; finite reaction rate is taken into account by introducing a set of two-state random variables - "gates", imposed on each BB particle, such that an open (closed) gate corresponds to a reactive (passive) state. We evaluate here a formal expression describing the time evolution of the AA particle survival probability, which generalizes our previous results. We prove that for quite a general class of random motion of the species involved in the reaction process, for infinite or finite number of traps, and for any time tt, the AA particle survival probability is always larger in case when AA stays immobile, than in situations when it moves.Comment: 12 pages, appearing in PR

    Conductance oscillations in strongly correlated fractional quantum Hall line junctions

    Get PDF
    We present a detailed theory of transport through line junctions formed by counterpropagating single-branch fractional-quantum-Hall edge channels having different filling factors. Intriguing transport properties are exhibited when strong Coulomb interactions between electrons from the two edges are present. Such strongly correlated line junctions can be classified according to the value of an effective line-junction filling factor n that is the inverse of an even integer. Interactions turn out to affect transport most importantly for n=1/2 and n=1/4. A particularly interesting case is n=1/4 corresponding to, e.g., a junction of edge channels having filling factor 1 and 1/5, respectively. We predict its differential tunneling conductance to oscillate as a function of voltage. This behavior directly reflects the existence of novel Majorana-fermion quasiparticle excitations in this type of line junction. Experimental accessibility of such systems in current cleaved-edge overgrown samples enables direct testing of our theoretical predictions.Comment: 2 figures, 10 pages, RevTex4, v2: added second figure for clarit

    Influence of thermal fluctuations on quantum phase transitions in one-dimensional disordered systems: Charge density waves and Luttinger liquids

    Full text link
    The low temperature phase diagram of 1D weakly disordered quantum systems like charge or spin density waves and Luttinger liquids is studied by a \emph{full finite temperature} renormalization group (RG) calculation. For vanishing quantum fluctuations this approach is amended by an \emph{exact} solution in the case of strong disorder and by a mapping onto the \emph{Burgers equation with noise} in the case of weak disorder, respectively. At \emph{zero} temperature we reproduce the quantum phase transition between a pinned (localized) and an unpinned (delocalized) phase for weak and strong quantum fluctuations, respectively, as found previously by Fukuyama or Giamarchi and Schulz. At \emph{finite} temperatures the localization transition is suppressed: the random potential is wiped out by thermal fluctuations on length scales larger than the thermal de Broglie wave length of the phason excitations. The existence of a zero temperature transition is reflected in a rich cross-over phase diagram of the correlation functions. In particular we find four different scaling regions: a \emph{classical disordered}, a \emph{quantum disordered}, a \emph{quantum critical} and a \emph{thermal} region. The results can be transferred directly to the discussion of the influence of disorder in superfluids. Finally we extend the RG calculation to the treatment of a commensurate lattice potential. Applications to related systems are discussed as well.Comment: 19 pages, 7 figure

    Double-Layer Systems at Zero Magnetic Field

    Full text link
    We investigate theoretically the effects of intralayer and interlayer exchange in biased double-layer electron and hole systems, in the absence of a magnetic field. We use a variational Hartree-Fock-like approximation to analyze the effects of layer separation, layer density, tunneling, and applied gate voltages on the layer densities and on interlayer phase coherence. In agreement with earlier work, we find that for very small layer separations and low layer densities, an interlayer-correlated ground state possessing spontaneous interlayer coherence (SILC) is obtained, even in the absence of interlayer tunneling. In contrast to earlier work, we find that as a function of total density, there exist four, rather than three, distinct noncrystalline phases for balanced double-layer systems without interlayer tunneling. The newly identified phase exists for a narrow range of densities and has three components and slightly unequal layer densities, with one layer being spin polarized, and the other unpolarized. An additional two-component phase is also possible in the presence of sufficiently strong bias or tunneling. The lowest-density SILC phase is the fully spin- and pseudospin-polarized ``one-component'' phase discussed by Zheng {\it et al.} [Phys. Rev. B {\bf 55}, 4506 (1997)]. We argue that this phase will produce a finite interlayer Coulomb drag at zero temperature due to the SILC. We calculate the particle densities in each layer as a function of the gate voltage and total particle density, and find that interlayer exchange can reduce or prevent abrupt transfers of charge between the two layers. We also calculate the effect of interlayer exchange on the interlayer capacitance.Comment: 35 pages, 19 figures included. To appear in PR
    corecore