1,418 research outputs found
Effects of the trapping potential on a superfluid atomic Fermi Gas
We examine a dilute two-component atomic Fermi gas trapped in a harmonic
potential in the superfluid phase. For experimentally realistic parameters, the
trapping potential is shown to have crucial influence on various properties of
the gas. Using an effective hamiltonian, analytical results for the critical
temperature, the temperature dependence of the superfluid gap, and the energy
of the lowest collective modes are derived. These results are shown to agree
well with numerical calculations. We furthermore discuss in more detail a
previous proposed method to experimentally observe the superfluid transition by
looking at the collective mode spectrum. Our results are aimed at the present
experimental effort to observe a superfluid phase transition in a trapped
atomic Fermi gas.Comment: 2. revised version. Minor mistakes in equation references corrected.
To appear in Phys. Rev.
Slow relaxation in granular compaction
Experimental studies show that the density of a vibrated granular material
evolves from a low density initial state into a higher density final steady
state. The relaxation towards the final density value follows an inverse
logarithmic law. We propose a simple stochastic adsorption-desorption process
which captures the essential mechanism underlying this remarkably slow
relaxation. As the system approaches its final state, a growing number of beads
have to be rearranged to enable a local density increase. In one dimension,
this number grows as , and the density increase rate is
drastically reduced by a factor . Consequently, a logarithmically slow
approach to the final state is found .Comment: revtex, 4 pages, 3 figures, also available from
http://arnold.uchicago.edu/~ebn
A nonextensive approach to Bose-Einstein condensation of trapped interacting boson gas
In the Bose-Einstein condensation of interacting atoms or molecules such as
87Rb, 23Na and 7Li, the theoretical understanding of the transition temperature
is not always obvious due to the interactions or zero point energy which cannot
be exactly taken into account. The S-wave collision model fails sometimes to
account for the condensation temperatures. In this work, we look at the problem
within the nonextensive statistics which is considered as a possible theory
describing interacting systems. The generalized energy Uq and the particle
number Nq of boson gas are given in terms of the nonextensive parameter q. q>1
(q<1) implies repulsive (attractive) interaction with respect to the perfect
gas. The generalized condensation temperature Tcq is derived versus Tc given by
the perfect gas theory. Thanks to the observed condensation temperatures, we
find q ~ 0.1 for 87Rb atomic gas, q ~ 0.95 for 7Li and q ~ 0.62 for 23Na. It is
concluded that the effective interactions are essentially attractive for the
three considered atoms, which is consistent with the observed temperatures
higher than those predicted by the conventional theory
Structural Ordering and Symmetry Breaking in Cd_2Re_2O_7
Single crystal X-ray diffraction measurements have been carried out on
Cd_2Re_2O_7 near and below the phase transition it exhibits at Tc' ~195 K.
Cd_2Re_2O_7 was recently discovered as the first, and to date only,
superconductor with the cubic pyrochlore structure. Superlattice Bragg peaks
show an apparently continuous structural transition at Tc', however the order
parameter displays anomalously slow growth to ~Tc'/10, and resolution limited
critical-like scattering is seen above Tc'. High resolution measurements show
the high temperature cubic Bragg peaks to split on entering the low temperature
phase, indicating a (likely tetragonal) lowering of symmetry below Tc'.Comment: 4 pages, 4 figure
Chiral Baryon Fields in the QCD Sum Rule
We study the structure of local baryon fields using the method of QCD sum
rule. We only consider the single baryon fields and calculate their operator
product expansions. We find that the octet baryon fields belonging to the
chiral representations [(3,3*)+(3*,3)] and [(8,1)+(1,8)] and the decuplet
baryon fields belonging to the chiral representations [(3,6)+(6,3)] lead to the
baryon masses which are consistent with the experimental data of ground baryon
masses. We also calculate their decay constants, check our normalizations for
baryon fields in PRD81:054002(2010) and find that they are well-defined.Comment: 12 pages, 6 figure, 1 table, accepted by EPJ
The Impact of New EUV Diagnostics on CME-Related Kinematics
We present the application of novel diagnostics to the spectroscopic
observation of a Coronal Mass Ejection (CME) on disk by the Extreme Ultraviolet
Imaging Spectrometer (EIS) on the Hinode spacecraft. We apply a recently
developed line profile asymmetry analysis to the spectroscopic observation of
NOAA AR 10930 on 14-15 December 2006 to three raster observations before and
during the eruption of a 1000km/s CME. We see the impact that the observer's
line-of-sight and magnetic field geometry have on the diagnostics used.
Further, and more importantly, we identify the on-disk signature of a
high-speed outflow behind the CME in the dimming region arising as a result of
the eruption. Supported by recent coronal observations of the STEREO
spacecraft, we speculate about the momentum flux resulting from this outflow as
a secondary momentum source to the CME. The results presented highlight the
importance of spectroscopic measurements in relation to CME kinematics, and the
need for full-disk synoptic spectroscopic observations of the coronal and
chromospheric plasmas to capture the signature of such explosive energy release
as a way of providing better constraints of CME propagation times to L1, or any
other point of interest in the heliosphere.Comment: Accepted to appear in Solar Physics Topical Issue titled "Remote
Sensing of the Inner Heliosphere". Manuscript has 14 pages, 5 color figures.
Movies supporting the figures can be found in
http://download.hao.ucar.edu/pub/mscott/papers/Weathe
Molecular dynamics study of melting of a bcc metal-vanadium II : thermodynamic melting
We present molecular dynamics simulations of the thermodynamic melting
transition of a bcc metal, vanadium using the Finnis-Sinclair potential. We
studied the structural, transport and energetic properties of slabs made of 27
atomic layers with a free surface. We investigated premelting phenomena at the
low-index surfaces of vanadium; V(111), V(001), and V(011), finding that as the
temperature increases, the V(111) surface disorders first, then the V(100)
surface, while the V(110) surface remains stable up to the melting temperature.
Also, as the temperature increases, the disorder spreads from the surface layer
into the bulk, establishing a thin quasiliquid film in the surface region. We
conclude that the hierarchy of premelting phenomena is inversely proportional
to the surface atomic density, being most pronounced for the V(111) surface
which has the lowest surface density
Meson exchange currents in electromagnetic one-nucleon emission
The role of meson exchange currents (MEC) in electron- and photon-induced
one-nucleon emission processes is studied in a nonrelativistic model including
correlations and final state interactions. The nuclear current is the sum of a
one-body and of a two-body part. The two-body current includes pion seagull,
pion-in-flight and the isobar current contributions. Numerical results are
presented for the exclusive 16O(e,e'p)15N and 16O(\gamma,p)15N reactions. MEC
effects are in general rather small in (e,e'p), while in (\gamma,p) they are
always large and important to obtain a consistent description of (e,e'p) and
(\gamma,p) data, with the same spectroscopic factors. The calculated (\gamma,p)
cross sections are sensitive to short-range correlations at high values of the
recoil momentum, where MEC effects are larger and overwhelm the contribution of
correlations.Comment: 9 pages, 6 figure
Towards unified understanding of conductance of stretched monatomic contacts
When monatomic contacts are stretched, their conductance behaves in
qualitatively different ways depending on their constituent atomic elements.
Under a single assumption of resonance formation, we show that various
conductance behavior can be understood in a unified way in terms of the
response of the resonance to stretching. This analysis clarifies the crucial
roles played by the number of valence electrons, charge neutrality, and orbital
shapes.Comment: 2 figure
Tensor network states and geometry
Tensor network states are used to approximate ground states of local
Hamiltonians on a lattice in D spatial dimensions. Different types of tensor
network states can be seen to generate different geometries. Matrix product
states (MPS) in D=1 dimensions, as well as projected entangled pair states
(PEPS) in D>1 dimensions, reproduce the D-dimensional physical geometry of the
lattice model; in contrast, the multi-scale entanglement renormalization ansatz
(MERA) generates a (D+1)-dimensional holographic geometry. Here we focus on
homogeneous tensor networks, where all the tensors in the network are copies of
the same tensor, and argue that certain structural properties of the resulting
many-body states are preconditioned by the geometry of the tensor network and
are therefore largely independent of the choice of variational parameters.
Indeed, the asymptotic decay of correlations in homogeneous MPS and MERA for
D=1 systems is seen to be determined by the structure of geodesics in the
physical and holographic geometries, respectively; whereas the asymptotic
scaling of entanglement entropy is seen to always obey a simple boundary law --
that is, again in the relevant geometry. This geometrical interpretation offers
a simple and unifying framework to understand the structural properties of, and
helps clarify the relation between, different tensor network states. In
addition, it has recently motivated the branching MERA, a generalization of the
MERA capable of reproducing violations of the entropic boundary law in D>1
dimensions.Comment: 18 pages, 18 figure
- …
