646 research outputs found
Name relearning in elderly patients with schizophrenia: episodic and temporary, not semantic and permanent
Original article can be found at: http://www.informaworld.com/smpp/title~content=t713659088--Copyright Informa / Taylor and FrancisIntroduction . Recent reports of lexical-semantic deficits in patients with schizophrenia (Laws, Al-Uzri, & Mortimer, 2000; Laws, McKenna, & Kondel, 1998) suggest that younger patients have problems accessing intact memories and older patients show apparent “loss” of the lexical-semantic memory representations themselves. Methods . Picture naming for everyday items was examined in a unique series of elderly patients with schizophrenia ( n = 10) with a mean illness duration of 45.5 years; and compared with that in patients with probable Alzheimer's disease ( n = 18) and elderly healthy controls ( n = 27). Naming consistency across time was used as an indicator of whether the schizophrenic patients had difficulty accessing representations or a loss of the representations themselves. Finally, we examined the ability of the schizophrenic patients to relearn the names of unnamed items across four weekly retraining sessions and to retain them at a one month follow-up. Results . The elderly schizophrenic patients were as anomic as patients with probable Alzheimer's disease. Consistency analysis revealed that the patients had storage deficits. Analysis of patient error types was consistent with a semantic deficit. Finally, the schizophrenic patients showed significant improvement with relearning, but this was not maintained at follow-up. Conclusions . Elderly patients with schizophrenia show a profound and stable anomia. Although name relearning induced some significant gains in naming, these were short-term and reflect episodic rather than semantic reinstatement of representations. Implications for cognitive remediation are discussed.Peer reviewe
The Hubbard model with smooth boundary conditions
We apply recently developed smooth boundary conditions to the quantum Monte
Carlo simulation of the two-dimensional Hubbard model. At half-filling, where
there is no sign problem, we show that the thermodynamic limit is reached more
rapidly with smooth rather than with periodic or open boundary conditions. Away
from half-filling, where ordinarily the simulation cannot be carried out at low
temperatures due to the existence of the sign problem, we show that smooth
boundary conditions allow us to reach significantly lower temperatures. We
examine pairing correlation functions away from half-filling in order to
determine the possible existence of a superconducting state. On a
lattice for , at a filling of and an inverse
temperature of , we did find enhancement of the -wave correlations
with respect to the non-interacting case, a possible sign of -wave
superconductivity.Comment: 16 pages RevTeX, 9 postscript figures included (Figure 1 will be
faxed on request
Detection of pairing correlation in the two-dimensional Hubbard model
Quantum Monte Carlo method is used to re-examine superconductivity in the
single-band Hubbard model in two dimensions. Instead of the conventional
pairing, we consider a `correlated pairing', \langle \tilde{c}_{i\uparrow}
\tilde{c}_{i'\downarrow} %\tilde{c}_{j'\downarrow}^\dagger \tilde{c}_{j
\uparrow}^\dagger \rangle with , which is inferred from the - model, the
strong-coupling limit of the Hubbard model. The pairing in the -wave channel
is found to possess both a divergence like in the pairing susceptibility
and a growth of the ground-state pairing correlation with sample size,
indicating an off-diagonal long-range order near (but not exactly at)
half-filling.Comment: 3 pages, revtex, 6 figures available on request from
[email protected]
An Improved Upper Bound for the Ground State Energy of Fermion Lattice Models
We present an improved upper bound for the ground state energy of lattice
fermion models with sign problem. The bound can be computed by numerical
simulation of a recently proposed family of deformed Hamiltonians with no sign
problem. For one dimensional models, we expect the bound to be particularly
effective and practical extrapolation procedures are discussed. In particular,
in a model of spinless interacting fermions and in the Hubbard model at various
filling and Coulomb repulsion we show how such techniques can estimate ground
state energies and correlation function with great accuracy.Comment: 5 pages, 5 figures; to appear in Physical Review
Effect of nearest neighbor repulsion on the low frequency phase diagram of a quarter-filled Hubbard-Holstein chain
We have studied the influence of nearest-neighbor (NN) repulsion on the low
frequency phase diagram of a quarter-filled Hubbard-Holstein chain. The NN
repulsion term induces the apparition of two new long range ordered phases (one
CDW for positive and one CDW for
negative ) that did not exist in the V=0 phase diagram. These results
are put into perspective with the newly observed charge ordered phases in
organic conductors and an interpretation of their origin in terms of
electron-molecular vibration coupling is suggested.Comment: 10 pages, 10 figure
Random Exchange Disorder in the Spin-1/2 XXZ Chain
The one-dimensional XXZ model is studied in the presence of disorder in the
Heisenberg Exchange Integral. Recent predictions obtained from renormalization
group calculations are investigated numerically using a Lanczos algorithm on
chains of up to 18 sites. It is found that in the presence of strong
X-Y-symmetric random exchange couplings, a ``random singlet'' phase with
quasi-long-range order in the spin-spin correlations persists. As the planar
anisotropy is varied, the full zero-temperature phase diagram is obtained and
compared with predictions of Doty and Fisher [Phys. Rev. B {\bf 45 }, 2167
(1992)].Comment: 9 pages + 8 plots appended, RevTex, FSU-SCRI-93-98 and
ORNL/CCIP/93/1
Spin-fluctuations in the quarter-filled Hubbard ring : significances to LiVO
Using the quantum Monte Carlo method, we investigate the spin dynamics of
itinerant electrons in the one-dimensional Hubbard system. Based on the model
calculation, we have studied the spin-fluctuations in the quarter-filled
metallic Hubbard ring, which is aimed at the vanadium ring or chain defined
along corner-sharing tetrahedra of LiVO, and found the dramatic changes
of magnetic responses and spin-fluctuation characteristics with the
temperature. Such results can explain the central findings in the recent
neutron scattering experiment for LiVO.Comment: 5 pages, 3 figure
Anisotropy on the Fermi Surface of the Two-Dimensional Hubbard Model
We investigate anisotropic charge fluctuations in the two-dimensional Hubbard
model at half filling. By the quantum Monte Carlo method, we calculate a
momentum-resolved charge compressibility , which shows effects of an infinitesimal doping. At the temperature
, shows peak structure at the points along the line. A similar peak
structure is reproduced in the mean-filed calculation for the d-wave pairing
state or the staggered flux state.Comment: 5 pages, 3 figures, figures and presentation are modifie
Optical excitations in a one-dimensional Mott insulator
The density-matrix renormalization-group (DMRG) method is used to investigate
optical excitations in the Mott insulating phase of a one-dimensional extended
Hubbard model. The linear optical conductivity is calculated using the
dynamical DMRG method and the nature of the lowest optically excited states is
investigated using a symmetrized DMRG approach. The numerical calculations
agree perfectly with field-theoretical predictions for a small Mott gap and
analytical results for a large Mott gap obtained with a strong-coupling
analysis. Is is shown that four types of optical excitations exist in this Mott
insulator: pairs of unbound charge excitations, excitons, excitonic strings,
and charge-density-wave (CDW) droplets. Each type of excitations dominates the
low-energy optical spectrum in some region of the interaction parameter space
and corresponds to distinct spectral features: a continuum starting at the Mott
gap (unbound charge excitations), a single peak or several isolated peaks below
the Mott gap (excitons and excitonic strings, respectively), and a continuum
below the Mott gap (CDW droplets).Comment: 12 pages (REVTEX 4), 12 figures (in 14 eps files), 1 tabl
Metal-insulator transition in the one-dimensional Holstein model at half filling
We study the one-dimensional Holstein model with spin-1/2 electrons at
half-filling. Ground state properties are calculated for long chains with great
accuracy using the density matrix renormalization group method and extrapolated
to the thermodynamic limit. We show that for small electron-phonon coupling or
large phonon frequency, the insulating Peierls ground state predicted by
mean-field theory is destroyed by quantum lattice fluctuations and that the
system remains in a metallic phase with a non-degenerate ground state and
power-law electronic and phononic correlations. When the electron-phonon
coupling becomes large or the phonon frequency small, the system undergoes a
transition to an insulating Peierls phase with a two-fold degenerate ground
state, long-range charge-density-wave order, a dimerized lattice structure, and
a gap in the electronic excitation spectrum.Comment: 6 pages (LaTex), 10 eps figure
- …