465 research outputs found

    DEM simulation of the mechanical properties of SiC ceramic under pre-stressing

    Get PDF
    In this paper, the method of discrete element model (DEM) simulation was used to investigate the mechanical properties of SiC ceramic materials under the action of pre-stress. Using the bonded particle model (BPM), several different numerical tests (such as UCT, TPB, SENB tests) of SiC ceramic were established. Different pre-stress values were applied on the lateral surface of the ceramic specimen during the numerical simulation process, all tests were carried out at least 5 times with different random number, and the average mechanical properties results were calculated. It was showed that the existence of pre-stress has a significant effect on the mechanical properties of materials. It can enhance the strength of materials, while the force action on material in machining process force or action force the crack’s initiation and propagation was limited

    Equations of State for Nonlinear Sigma-Models II: Relations between Resummation Schemes, and Crossover Phenomena

    Full text link
    It is shown how a recent method to systematically extrapolate and resum the loop expansion for nonlinear sigma-models is related to solutions of the renormalization group equation. This relation is used to generalize the explicit equations of state obtained previously to models which display crossover phenomena. As an example we discuss Wegner's localization model and consider the crossover from symplectic to unitary symmetry.Comment: 14pp., REVTeX, 1 figur

    Generalized hole-particle transformations and spin reflection positivity in multi-orbital systems

    Full text link
    We propose a scheme combining spin reflection positivity and generalized hole-particle and orbital transformations to characterize the symmetry properties of the ground state for some correlated electron models on bipartite lattices. In particular, we rigorously determine at half-filling and for different regions of the parameter space the spin, orbital and η\eta pairing pseudospin of the ground state of generalized two-orbital Hubbard models which include the Hund's rule coupling.Comment: 6 pages, 2 figure

    Skyrmions in Higher Landau Levels

    Full text link
    We calculate the energies of quasiparticles with large numbers of reversed spins (``skyrmions'') for odd integer filling factors 2k+1, k is greater than or equals 1. We find, in contrast with the known result for filling factor equals 1 (k = 0), that these quasiparticles always have higher energy than the fully polarized ones and hence are not the low energy charged excitations, even at small Zeeman energies. It follows that skyrmions are the relevant quasiparticles only at filling factors 1, 1/3 and 1/5.Comment: 10 pages, RevTe

    Anisotropic Transport of Quantum Hall Meron-Pair Excitations

    Full text link
    Double-layer quantum Hall systems at total filling factor νT=1\nu_T=1 can exhibit a commensurate-incommensurate phase transition driven by a magnetic field BB_{\parallel} oriented parallel to the layers. Within the commensurate phase, the lowest charge excitations are believed to be linearly-confined Meron pairs, which are energetically favored to align with BB_{\parallel}. In order to investigate this interesting object, we propose a gated double-layer Hall bar experiment in which BB_{\parallel} can be rotated with respect to the direction of a constriction. We demonstrate the strong angle-dependent transport due to the anisotropic nature of linearly-confined Meron pairs and discuss how it would be manifested in experiment.Comment: 4 pages, RevTex, 3 postscript figure

    Persistent Currents and Dissipation in Narrow Bilayer Quantum Hall Bars

    Full text link
    Bilayer quantum Hall states support a flow of nearly dissipationless staggered current which can only decay through collective channels. We study the dominant finite-temperature dissipation mechanism which in narrow bars is driven by thermal nucleation of pseudospin solitons. We find the finite-temperature resistivity, predict the resulting staggered current-voltage characteristics, and calculate the associated zero-temperature critical staggered current and gate voltage.Comment: 4 pgs. REVTeX, 3 eps figure

    The Mechanical and Thermal Design for the MICE Coupling Solenoid Magnet

    Full text link

    Effect of Subband Landau Level Coupling to the Linearly Dispersing Collective Mode in a Quantum Hall Ferromagnet

    Full text link
    In a recent experiment (Phys. Rev. Lett. {\bf 87}, 036903 (2001)), Spielman et al observed a linearly dispersing collective mode in quantum Hall ferromagnet. While it qualitatively agrees with the Goldstone mode dispersion at small wave vector, the experimental mode velocity is slower than that calculated by previous theories by a factor about 0.55. A better agreement with the experimental data may possibly be achieved by taking the subband Landau level coupling into account due to the finiteness of the layer thickness. A novel coupling of quantum fluctuation to the tunneling is briefly discussed.Comment: 4 pages; published versio

    Solitons in polarized double layer quantum Hall systems

    Full text link
    A new manifestation of interlayer coherence in strongly polarized double layer quantum Hall systems with total filling factor ν=1\nu=1 in the presence of a small or zero tunneling is theoretically predicted. It is shown that moving (for small tunneling) and spatially localized (for zero tunneling) stable pseudospin solitons develop which could be interpreted as mobile or static charge-density excitations. The possibility of their experimental observation is also discussed.Comment: Phys. Rev. B (accepted
    corecore