7 research outputs found

    Isotope dependence and quantum effects on atomic hydrogen diffusion in liquid water

    Get PDF
    Relative diffusion coefficients were determined in water for the D, H, and Mu isotopes of atomic hydrogen by measuring their diffusion-limited spin-exchange rate constants with Ni2+ as a function of temperature. H and D atoms were generated by pulse radiolysis of water and measured by time-resolved pulsed EPR. Mu atoms are detected by muonium spin resonance. To isolate the atomic mass effect from solvent isotope effect, we measured all three spin-exchange rates in 90% D2O. The diffusion depends on the atomic mass, demonstrating breakdown of Stokes−Einstein behavior. The diffusion can be understood using a combination of water “cavity diffusion” and “hopping” mechanisms, as has been proposed in the literature. The H/D isotope effect agrees with previous modeling using ring polymer molecular dynamics. The “quantum swelling” effect on muonium due to its larger de Broglie wavelength does not seem to slow its “hopping” diffusion as much as predicted in previous work. Quantum effects of both the atom mass and the water librations have been modeled using RPMD and a qTIP4P/f quantized flexible water model. These results suggest that the muonium diffusion is very sensitive to the Mu versus water potential used.Division of Chemical Sciences,Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through award DE-FC02-04ER15533.http://pubs.acs.org/journal/jpcafh2016-12-30hb201

    In-situ chemical oxidation of chlorendic acid by persulfate: Elucidation of the roles of adsorption and oxidation on chlorendic acid removal

    No full text
    The oxidation of chlorendic acid (CA), a polychlorinated recalcitrant contaminant, by heat-, mineral-, and base-activated persulfate was investigated. In pH 3–12 homogeneous (i.e., solid-free) solutions, CA was oxidized by ‱OH and SO4 ‱- radicals, resulting in a nearly stoichiometric production of Cl−. The rate constants for the reaction between these radicals and CA were measured at different temperatures by electron pulse radiolysis, and were found to be kOH = (8.71 ± 0.17) × 107 M−1s−1 and kSO4 = (6.57 ± 0.83) × 107 M−1s−1 at 24.5 °C for ‱OH and SO4 ‱-, respectively. CA was oxidized at much slower rates in solutions containing iron oxyhydroxide or aquifer soils, partially due to the adsorption of CA on these solids. To gain further insight into the effect of solids during in-situ remediation of CA, the adsorption of CA onto iron (hydr)oxide, manganese dioxide, silica, alumina, and aquifer soils was investigated. The fraction of CA that was adsorbed on these materials increased as the solution pH decreased. Given that the solution pH can decrease dramatically in persulfate-based remedial systems, adsorption may reduce the ability of persulfate to oxidize CA. Overall, the results of this study provide important information about ho

    Radiation chemistry of the branched-chain monoamide di-ethylhexyl-isobutyramide

    No full text
    International audienceThe radiolytic degradation of di-ethylhexyl-isobutyramide (DEHiBA) was examined by subjecting the compound to gamma irradiation, measuring the remaining concentration of the intact compound, identifying the degradation products and measuring uranium distribution ratios. The combined effects of radiation dose, contact with aqueous solutions of HNO3_3, and aeration were also examined. The DEHiBA displayed significant stability at doses up to 1000 kGy, undergoing a slow exponential concentration decrease that was accompanied by the appearance of multiple degradation products. The most abundant compounds that were formed by radiolysis resulted from cleavage of the Ccarbonyl_{carbonyl}-N and Cethylhexyl_{ethylhexyl}-N bonds, generating di-ethylhexylamine, and mono- ethylhexyl-isobutyramide. Acid contact did alter the radiolytic pathways, with acid favoring cleavage of the Ccarbonyl_{carbonyl}-N bond, while a more diverse array of compounds were formed in the absence of acid. Pulsed radiolysis experiments were also conducted, in which picosecond bursts of energetic electrons were used to irradiate solutions of dodecane containing DEHiBA; formation of the dodecane radical cation was implicated, which serially reacted with DEHiBA to form radical or radical cation species intermediate in the formation of the observed products. The slow degradation kinetics suggests that DEHiBA possesses good potential for selective extraction of uranium in fuel cycle extraction operations

    Heteroatom-Centered Radicals

    No full text
    corecore