35 research outputs found

    Continuous-time quantum walk on integer lattices and homogeneous trees

    Full text link
    This paper is concerned with the continuous-time quantum walk on Z, Z^d, and infinite homogeneous trees. By using the generating function method, we compute the limit of the average probability distribution for the general isotropic walk on Z, and for nearest-neighbor walks on Z^d and infinite homogeneous trees. In addition, we compute the asymptotic approximation for the probability of the return to zero at time t in all these cases.Comment: The journal version (save for formatting); 19 page

    Billiards in a general domain with random reflections

    Full text link
    We study stochastic billiards on general tables: a particle moves according to its constant velocity inside some domain D⊂Rd{\mathcal D} \subset {\mathbb R}^d until it hits the boundary and bounces randomly inside according to some reflection law. We assume that the boundary of the domain is locally Lipschitz and almost everywhere continuously differentiable. The angle of the outgoing velocity with the inner normal vector has a specified, absolutely continuous density. We construct the discrete time and the continuous time processes recording the sequence of hitting points on the boundary and the pair location/velocity. We mainly focus on the case of bounded domains. Then, we prove exponential ergodicity of these two Markov processes, we study their invariant distribution and their normal (Gaussian) fluctuations. Of particular interest is the case of the cosine reflection law: the stationary distributions for the two processes are uniform in this case, the discrete time chain is reversible though the continuous time process is quasi-reversible. Also in this case, we give a natural construction of a chord "picked at random" in D{\mathcal D}, and we study the angle of intersection of the process with a (d−1)(d-1)-dimensional manifold contained in D{\mathcal D}.Comment: 50 pages, 10 figures; To appear in: Archive for Rational Mechanics and Analysis; corrected Theorem 2.8 (induced chords in nonconvex subdomains

    Cascades of Particles Moving at Finite Velocity in Hyperbolic Spaces

    Full text link
    A branching process of particles moving at finite velocity over the geodesic lines of the hyperbolic space (Poincar\'e half-plane and Poincar\'e disk) is examined. Each particle can split into two particles only once at Poisson paced times and deviates orthogonally when splitted. At time tt, after N(t)N(t) Poisson events, there are N(t)+1N(t)+1 particles moving along different geodesic lines. We are able to obtain the exact expression of the mean hyperbolic distance of the center of mass of the cloud of particles. We derive such mean hyperbolic distance from two different and independent ways and we study the behavior of the relevant expression as tt increases and for different values of the parameters cc (hyperbolic velocity of motion) and λ\lambda (rate of reproduction). The mean hyperbolic distance of each moving particle is also examined and a useful representation, as the distance of a randomly stopped particle moving over the main geodesic line, is presented

    Some recent developments in quantization of fractal measures

    Full text link
    We give an overview on the quantization problem for fractal measures, including some related results and methods which have been developed in the last decades. Based on the work of Graf and Luschgy, we propose a three-step procedure to estimate the quantization errors. We survey some recent progress, which makes use of this procedure, including the quantization for self-affine measures, Markov-type measures on graph-directed fractals, and product measures on multiscale Moran sets. Several open problems are mentioned.Comment: 13 page

    Percolation clusters in hyperbolic tessellations

    No full text

    Chernoff's distribution and parabolic partial differential equations

    No full text
    We give an alternative route to the derivation of the distribution of the maximum and the location of the maximum of one-sided and two-sided Brownian motion with a negative parabolic drift, using the Feynman-Kac formula with stopping times. The derivation also uses an interesting relations between integrals of special functions, in particular involving integrals with respect to functions which can be called ``incomplete Scorer functions". The relation is proved by showing that both integrals, as a function of two parameters, satisfy the same extended heat equation, and the maximum principle is used to show that these solution must therefore have the stated relation
    corecore