521 research outputs found

    High Performance Associative Memories and Structured Weight Dilution

    Get PDF
    Copyright SpringerThe consequences of two techniques for symmetrically diluting the weights of the standard Hopfield architecture associative memory model, trained using a non-Hebbian learning rule, are examined. This paper reports experimental investigations into the effect of dilution on factors such as: pattern stability and attractor performance. It is concluded that these networks maintain a reasonable level of performance at fairly high dilution rates

    A Mixed-Method Investigation into Therapeutic Yoga as an Adjunctive Treatment for People Recovering from Substance Use Disorders

    Get PDF
    © 2020, The Author(s). Mind Body Connect (MBC) is a charity which uses therapeutic yoga as a vehicle of change for marginalized populations. Alongside MBC, Sheffield Hallam University’s SHU Strength researchers carried out this study aiming to: (1) Gauge the impact of therapeutic yoga classes upon the mood state of people with a Substance Use Disorder (SUD) and (2) Explore the perceived benefits of therapeutic yoga class participation. An adapted shortened Profile of Mood States (POMS) was completed before and after each yoga class. A comparison of means with paired sample T-Test and Cohen’s D was then carried out. Participants who attended 6+ classes were interviewed. Findings were then converged. Before and after measurements of anger, sadness, tiredness, worry, confusion, energy and relaxation were taken, Classes were held at SHU for service users from a Phoenix Future’s (PF) rehabilitation centre. A single yoga class significantly relaxed participants and reduced negative mood states. Interview data covered a range of perceived benefits including the use of yogic down-regulation techniques as daily coping strategies. The MBC yoga programme appears beneficial as an adjunctive therapy for PF residents. Future SHU Strength research shall focus on the mid-long-term exercise habits of the recovery community and the impact of the MBC yoga programme upon the early recovery period of detoxification

    Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories

    Full text link
    Dynamical equations are formulated and a numerical study is provided for self-oscillatory model systems based on the triple linkage hinge mechanism of Thurston -- Weeks -- Hunt -- MacKay. We consider systems with holonomic mechanical constraint of three rotators as well as systems, where three rotators interact by potential forces. We present and discuss some quantitative characteristics of the chaotic regimes (Lyapunov exponents, power spectrum). Chaotic dynamics of the models we consider are associated with hyperbolic attractors, at least, at relatively small supercriticality of the self-oscillating modes; that follows from numerical analysis of the distribution for angles of intersection of stable and unstable manifolds of phase trajectories on the attractors. In systems based on rotators with interacting potential the hyperbolicity is violated starting from a certain level of excitation.Comment: 30 pages, 18 figure

    Hyperbolic attractor in a system of coupled non-autonomous van der Pol oscillators: Numerical test for expanding and contracting cones

    Full text link
    We present numerical verification of hyperbolic nature for chaotic attractor in a system of two coupled non-autonomous van der Pol oscillators (Kuznetsov, Phys. Rev. Lett., 95, 144101, 2005). At certain parameter values, in the four-dimensional phase space of the Poincare map a toroidal domain (a direct product of a circle and a three-dimensional ball) is determined, which is mapped into itself and contains the attractor we analyze. In accordance with the computations, in this absorbing domain the conditions of hyperbolicity are valid, which are formulated in terms of contracting and expanding cones in the tangent spaces (the vector spaces of the small state perturbations).Comment: 14 pages, 7 figure

    Mitochondrial functionality and beef colour: A review of recent research

    Get PDF
    The bright-red colour of meat that consumers prefer depends on the depth of oxygen diffusion into the tissue and myoglobin oxygenation. Interestingly, both processes are influenced by mitochondrial activity in postmortem muscle. The transition of muscle metabolism from aerobic to anaerobic pathways affects various cellular processes including mitochondrial functionality. Numerous studies report that even with compromised structure, mitochondria continue to influence postmortem beef colour via oxygen consumption and metmyoglobin reducing activity. Hence, an in-depth understanding of the pre- and post-harvest factors affecting mitochondrial functionality can significantly enhance existing knowledge of meat colour and colour stability. Several comprehensive reviews have discussed the biochemical factors affecting meat colour, but there are only a few that have sections on the impact of mitochondria on beef colour. Furthermore, advancement of high-throughput techniques such as metabolomics and proteomics has enabled researchers to elucidate metabolite and protein changes related to mitochondria. Therefore, the objective of this review is to provide an overview on the role of mitochondria in beef colour, with a focus on recent advances in mitochondrial research, oxygen consumption, and metmyoglobin reducing ability.Keywords: Myoglobin, metmyoglobin reducing activity, meat colour, metabolomics, oxygen consumption, proteomic

    Cellular Array Morphology During Directional Solidification

    Get PDF
    Cellular array morphology has been examined in the shallow cell, deep cell, and cell-to-dendrite transition regime in Pb-2.2 wt pct Sb and Al-4.1 wt pct Cu alloy single-crystal samples that were directionally solidified along [100]. Statistical analysis of the cellular spacing distribution on transverse sections has been carried out using minimum spanning tree (MST), Voronoi polygons, radial distribution factor, and fast Fourier transform (FFT) techniques. The frequency distribution of the number of nearest neighbors and the MST parameters suggest that the arrangement of cells may be visualized as a hexagonal tessellation with superimposed 50 pct random noise. However, the power spectrum of the Fourier transform of the cell centers shows a diffused single-ring pattern that does not agree with the power spectrum from the hexagonal tessellation having a 50 pct superimposed random (uniformly distributed or Gaussian) noise. The radial distribution factor obtained from the cells is similar to that of liquids. An overall steady-state distribution in terms of the mean primary spacing is achieved after directional solidification of about three mushy-zone lengths. However, the process of nearest-neighbor interaction continues throughout directional solidification, as indicated by about 14 pct of the cells undergoing submerging in the shallow cell regime or by an increasing first and second nearest-neighbor ordering along the growth direction for the cells at the cell-to-dendrite transition. The nature of cell distribution in the Al-Cu alloy appears to be the same as that in the Pb-Sb. The ratio between the upper and lower limits of the primary spacing, as defined by the largest and the smallest 10 pct of the population, respectively, is constant: 1.43 +/- 0.11. It does not depend upon the solidification processing conditions

    Force and Motion Generation of Molecular Motors: A Generic Description

    Get PDF
    We review the properties of biological motor proteins which move along linear filaments that are polar and periodic. The physics of the operation of such motors can be described by simple stochastic models which are coupled to a chemical reaction. We analyze the essential features of force and motion generation and discuss the general properties of single motors in the framework of two-state models. Systems which contain large numbers of motors such as muscles and flagella motivate the study of many interacting motors within the framework of simple models. In this case, collective effects can lead to new types of behaviors such as dynamic instabilities of the steady states and oscillatory motion.Comment: 29 pages, 9 figure

    Revisiting the Local Scaling Hypothesis in Stably Stratified Atmospheric Boundary Layer Turbulence: an Integration of Field and Laboratory Measurements with Large-eddy Simulations

    Full text link
    The `local scaling' hypothesis, first introduced by Nieuwstadt two decades ago, describes the turbulence structure of stable boundary layers in a very succinct way and is an integral part of numerous local closure-based numerical weather prediction models. However, the validity of this hypothesis under very stable conditions is a subject of on-going debate. In this work, we attempt to address this controversial issue by performing extensive analyses of turbulence data from several field campaigns, wind-tunnel experiments and large-eddy simulations. Wide range of stabilities, diverse field conditions and a comprehensive set of turbulence statistics make this study distinct

    Mushy Zone Morphology During Directional Solidification of Pb-5.8 Wt Pct Sb Alloy

    Get PDF
    The Pb-5.8 wt pet Sb alloy was directionally solidified with a positive thermal gradient of 140 K cm(-1) at a growth speed ranging from 0.8 to 30 mu m s(-1), and then it was quenched to retain the mushy zone morphology. The morphology of the mushy zone along its entire length has been characterized by using a serial sectioning and three-dimensional image reconstruction technique. Variation in the cellular/dendritic shape factor, hydraulic radius of the interdendritic region, and fraction solid along the mushy zone length has been studied. A comparison with predictions from theoretical models indicates that convection remarkably reduces the primary dendrite spacing while its influence on the dendrite tip radius is not as significant

    Primary Dendrite Distribution and Disorder During Directional Solidification of Pb-Sb Alloys

    Get PDF
    Pb-2.2 wt pct Sb and Pb-5.8 wt pet Sb alloys have been directionally solidified from a single-crystal seed with its [100] orientation parallel to the growth direction, to examine the primary dendrite distribution and disorder of the dendrite arrays. The dendrite distribution and ordering have been investigated using analysis techniques such as the Gauss-amplitude fit to the frequency distribution of nearest and higher-order spacings, minimum spanning tree (MST), Voronoi polygon, and Fourier transform (FT) of the dendrite centers. Since the arrangement of dendrites is driven by the requirement to accommodate side-branch growth along the (100) directions, the FT images of the fully developed dendrite centers contain spots which indicate this preferred alignment. A directional solidification distance of about three mushy-zone lengths is sufficient to ensure a steady-state dendritic array, in terms of reaching a constant mean primary spacing. However, local dendrite ordering continues throughout the directional solidification process. The interdendritic convection not only decreases the mean primary spacing, it also makes the dendrite array more disordered and reduces the ratio of the upper and lower spacing limits, as defined by the largest 5 pct and the smallest 5 pct of the population
    corecore