12 research outputs found

    Organ-specific alteration in caspase expression and STK3 proteolysis during the aging process

    Get PDF
    Caspases and their substrates are key mediators of apoptosis and strongly implicated in various physiological processes. As the serine/threonine kinase family is involved in apoptosis and serine/threonine kinase 3 (STK3) is a recently identified caspase-6 substrate, we assessed the expression and cleavage of STK3 in murine peripheral organs and brain regions during the aging process. We also assessed caspase-3, -6, -7, and -8 expression and activity in order to delineate potential mechanism(s) underlying the generation of the STK3 fragments observed and their relation to the apoptotic pathway. We demonstrate for the first time the cleavage of STK3 by caspase-7 and show that STK3 protein levels globally increase throughout the organism with age. In contrast, caspase-3, -6, -7, and -8 expression and activity vary significantly among the different organs analyzed suggesting differential effects of aging on the apoptotic mechanism and/or nonapoptotic functions of caspases throughout the organism. These results further our understanding of the role of caspases and their substrates in the normal aging process and highlight a potential role for STK3 in neurodegeneration

    Study on the Mechanical Properties of CMP Pads

    No full text

    Age-dependent differential expression of death-associated protein 6 (Daxx) in various peripheral tissues and different brain regions of C57BL/6 male mice

    Get PDF
    Death-associated protein 6 (DAXX) is a ubiquitous protein implicated in various cellular processes such as apoptosis, tumorigenesis, development and transcription. The role of DAXX is however ambiguous and many contradictory results regarding its function in apoptosis upon various cellular stresses are described in the literature. In order to have a better understanding of the role of DAXX throughout the entire organism under physiological stress conditions, we have characterized the mRNA levels, protein expression and the proteolytic processing of DAXX in the normal aging process in peripheral organs and brain regions in C57BL/6 male mice. Overall, Daxx mRNA expression decreases with aging in the liver, kidney, heart, cortex and cerebellum. In contrast, an increase is observed in the striatum. The protein expression of DAXX and of its proteolytic fragments increases with aging in the kidney, heart and cortex. In liver and spleen, no changes are observed while in the striatum and cerebellum, certain forms increase and others decrease with age, suggesting that the functions of DAXX may be cell type dependent. This study provides important details regarding the expression and post-translational modifications of DAXX in aging in the entire organism and provides reference data for the deregulation observed in age-associated diseases

    Abscisic Acid In Plant Response And Adaptation To Drought And Salt Stress

    No full text

    ATLAS: technical proposal for a general-purpose p p experiment at the large hadron collider at CERN

    No full text
    corecore