5 research outputs found

    Asymptotic properties of black hole solutions in dimensionally reduced Einstein-Gauss-Bonnet gravity

    Get PDF
    We study the asymptotic behavior of the spherically symmetric solutions of the system obtained from the dimensional reduction of the six-dimensional Einstein- Gauss-Bonnet action. We show that in general the scalar field that parametrizes the size of the internal space is not trivial, but nevertheless the solutions depend on a single parameter. In analogy with other models containing Gauss-Bonnet terms, naked singularities are avoided if a minimal radius for the horizon is assumed.Comment: 9 pages, plain Te

    Gravity induced non-local effects in the standard model

    Get PDF
    We show that the non-locality recently identified in quantum gravity using resummation techniques propagates to the matter sector of the theory. We describe these non-local effects using effective field theory techniques. We derive the complete set of non-local effective operators at order NG2NG2 for theories involving scalar, spinor, and vector fields. We then use recent data from the Large Hadron Collider to set a bound on the scale of space–time non-locality and find M⋆>3×10−11 GeV

    Certain aspects of regularity in scalar field cosmological dynamics

    Full text link
    We consider dynamics of the FRW Universe with a scalar field. Using Maupertuis principle we find a curvature of geodesics flow and show that zones of positive curvature exist for all considered types of scalar field potential. Usually, phase space of systems with the positive curvature contains islands of regular motion. We find these islands numerically for shallow scalar field potentials. It is shown also that beyond the physical domain the islands of regularity exist for quadratic potentials as well.Comment: 15 pages with 4 figures; typos corrected, final version to appear in Regular and Chaotic Dynamic

    Brane cosmology with curvature corrections

    Get PDF
    We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. The combined effect of these curvature corrections to the action removes the infinite-density big bang singularity, although the curvature can still diverge for some parameter values. A radiation brane undergoes accelerated expansion near the minimal scale factor, for a range of parameters. This acceleration is driven by the geometric effects, without an inflaton field or negative pressures. At late times, conventional cosmology is recovered.Comment: RevTex4, 8 pages, no figures, minor change

    A simple model for the evaporation of black holes at final stages

    No full text
    We present a simple model for the evaporation of primordial black holes at final stages with the formation of a relic remnant with a mass of 1–103 m P1. The model takes into account the conservation of energy and the impossibility of passing through the state with the minimum possible mass. These relic remnants may account for a substantial fraction of dark matter in the Universe. (Springer
    corecore